×

Duality between compactness and discreteness beyond Pontryagin duality. (English. Russian original) Zbl 1302.22005

Proc. Steklov Inst. Math. 271, 212-227 (2010); translation from Tr. Mat. Inst. Steklova 271, 224-240 (2010).
Summary: One of the most striking results of Pontryagin’s duality theory is the duality between compact and discrete locally compact abelian groups. This duality also persists in part for objects associated with noncommutative topological groups. In particular, it is well known that the dual space of a compact topological group is discrete, while the dual space of a discrete group is quasicompact (i.e., it satisfies the finite covering theorem but is not necessarily Hausdorff). The converse of the former assertion is also true, whereas the converse of the latter is not (there are simple examples of nondiscrete locally compact solvable groups of height 2 whose dual spaces are quasicompact and non-Hausdorff (they are \(T_1\) spaces)). However, in the class of locally compact groups all of whose irreducible unitary representations are finite-dimensional, a group is discrete if and only if its dual space is quasicompact (and is automatically a \(T_1\) space). The proof is based on the structural theorem for locally compact groups all of whose irreducible unitary representations are finite-dimensional. Certain duality between compactness and discreteness can also be revealed in groups that are not necessarily locally compact but are unitarily, or at least reflexively, representable, provided that (in the simplest case) the irreducible representations of a group form a sufficiently large family and have jointly bounded dimensions. The corresponding analogs of compactness and discreteness cannot always be easily identified, but they are still duals of each other to some extent.

MSC:

22D35 Duality theorems for locally compact groups
22D05 General properties and structure of locally compact groups
Full Text: DOI

References:

[1] S. A. Amitsur, ”Groups with Representations of Bounded Degree. II,” Ill. J. Math. 5, 198–205 (1961). · Zbl 0100.25704
[2] S. Antonyan and M. Sanchis, ”Extension of Locally Pseudocompact Group Actions,” Ann. Mat. Pura Appl., Ser. 4, 181, 239–246 (2002). · Zbl 1169.54356 · doi:10.1007/s102310100039
[3] A. V. Arhangel’skii, ”On a Theorem of W.W. Comfort and K.A. Ross,” Comment. Math. Univ. Carol. 40(1), 133–151 (1999).
[4] G. Arsac, ”Sur l’espace de Banach engendré par les coefficients d’une représentation unitaire,” Publ. Dép. Math., Lyon 13(2), 1–101 (1976). · Zbl 0365.43005
[5] W. Banaszczyk, ”On the Existence of Exotic Banach-Lie Groups,” Math. Ann. 264(4), 485–493 (1983). · Zbl 0502.22010 · doi:10.1007/BF01456956
[6] W. Banaszczyk, Additive Subgroups of Topological Vector Spaces (Springer, Berlin, 1991), Lect. Notes Math. 1466. · Zbl 0743.46002
[7] A. Bélanger and B. E. Forrest, ”Geometric Properties of Some Subspaces of VN(G),” Proc. Am. Math. Soc. 122(1), 131–133 (1994). · Zbl 0845.43006
[8] A. Bélanger and B. E. Forrest, ”Geometric Properties of Coefficient Function Spaces Determined by Unitary Representations of a Locally Compact Group,” J. Math. Anal. Appl. 193(2), 390–405 (1995). · Zbl 0854.43010 · doi:10.1006/jmaa.1995.1242
[9] L. J. Bunce, ”The Dunford-Pettis Property in the Predual of a von Neumann Algebra,” Proc. Am. Math. Soc. 116(1), 99–100 (1992). · Zbl 0810.46060 · doi:10.1090/S0002-9939-1992-1091177-1
[10] C.-H. Chu, ”A Note on Scattered C*-Algebras and the Radon-Nikodym Property,” J. London Math. Soc., Ser. 2, 24(3), 533–536 (1981). · Zbl 0438.46041 · doi:10.1112/jlms/s2-24.3.533
[11] C.-H. Chu, B. Iochum, and S. Watanabe, ”C*-Algebras with the Dunford-Pettis Property,” in Function Spaces: Proc. Conf., Edwardsville, IL, 1990 (M. Dekker, New York, 1992), Lect. Notes Pure Appl. Math. 136, pp. 67–70. · Zbl 0817.46054
[12] H. Chu, ”Compactification and Duality of Topological Groups,” Trans. Am. Math. Soc. 123(2), 310–324 (1966). · Zbl 0158.03002 · doi:10.1090/S0002-9947-1966-0195988-5
[13] W. W. Comfort, T. Soundararajan, and F. J. Trigos-Arrieta, ”Determining a Weakly Locally Compact Group Topology by Its System of Closed Subgroups,” in Papers in General Topology and Applications, Ed. by S. Andina et al. (New York Acad. Sci., New York, 1994), Ann. New York Acad. Sci. 728, pp. 248–261. · Zbl 0921.22001
[14] W. W. Comfort and F. J. Trigos-Arrieta, ”Locally Pseudocompact Topological Groups,” Topol. Appl. 62(3), 263–280 (1995). · Zbl 0828.22003 · doi:10.1016/0166-8641(94)00048-8
[15] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński, ”Factoring Weakly Compact Operators,” J. Funct. Anal. 17, 311–327 (1974). · Zbl 0306.46020 · doi:10.1016/0022-1236(74)90044-5
[16] M. M. Day, Normed Linear Spaces (Springer, New York, 1973). · Zbl 0268.46013
[17] D. Dikranjan and D. Shakhmatov, Algebraic Structure of Pseudocompact Groups (Am. Math. Soc., Providence, RI, 1998), Mem. Am. Math. Soc., No. 633. · Zbl 0907.22005
[18] J. Dixmier, Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1969; Nauka, Moscow, 1974).
[19] N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory (Interscience, New York, 1958; Inostrannaya Literatura, Moscow, 1962). · Zbl 0084.10402
[20] R. E. Edwards, Functional Analysis: Theory and Applications (Holt Rinehart and Winston, New York, 1965; Mir, Moscow, 1969). · Zbl 0182.16101
[21] E. G. Effros and Z.-J. Ruan, ”Operator Space Tensor Products and Hopf Convolution Algebras,” J. Oper. Theory 50(1), 131–156 (2003). · Zbl 1036.46042
[22] R. Ellis, ”Locally Compact Transformation Groups,” Duke Math. J. 24, 119–125 (1957). · Zbl 0079.16602 · doi:10.1215/S0012-7094-57-02417-1
[23] R. Engelking, General Topology (PWN-Polish Sci. Publ., Warszawa, 1977; Mir, Moscow, 1986).
[24] M. Enock and J.-M. Schwartz, Kac Algebras and Duality of Locally Compact Groups (Springer, Berlin, 1992). · Zbl 0805.22003
[25] J. Ernest, ”A New Group Algebra for Locally Compact Groups,” Am. J. Math. 86, 467–492 (1964). · Zbl 0211.15402 · doi:10.2307/2373020
[26] J. Ernest, ”A New Group Algebra for Locally Compact Groups. II,” Can. J. Math. 17, 604–615 (1965). · Zbl 0211.15403 · doi:10.4153/CJM-1965-060-0
[27] J. Ernest, ”Hopf-von Neumann Algebras,” in Functional Analysis: Proc. Conf. Univ. Calif., Irvine, 1966 (Academic, London, 1967), pp. 195–215.
[28] P. Eymard, ”L’algèbre de Fourier d’un groupe localement compact,” Bull. Soc. Math. France 92, 181–236 (1964). · Zbl 0169.46403 · doi:10.24033/bsmf.1607
[29] J. M. G. Fell, ”Weak Containment and Induced Representations of Groups,” Can. J. Math. 14, 237–268 (1962). · Zbl 0138.07301 · doi:10.4153/CJM-1962-016-6
[30] J. M. G. Fell, ”Weak Containment and Induced Representations of Groups. II,” Trans. Am. Math. Soc. 110, 424–447 (1964). · Zbl 0195.42201
[31] W. Freedman and A. Ülger, ”The Phillips Properties,” Proc. Am. Math. Soc. 128(7), 2137–2145 (2000). · Zbl 0953.46007 · doi:10.1090/S0002-9939-00-05703-8
[32] H. Freudenthal, ”Topologische Gruppen mit genügend vielen fastperiodischen Funktionen,” Ann. Math., Ser. 2, 37, 57–77 (1936). · JFM 62.0437.02 · doi:10.2307/1968687
[33] S. A. Gaal, Linear Analysis and Representation Theory (Springer, New York, 1973).
[34] J. Galindo, S. Hernández, and T.-S. Wu, ”Recent Results and Open Questions Relating Chu Duality and Bohr Compactifications of Locally Compact Groups,” in Open Problems in Topology. II, Ed. by E. Pearl (Elsevier, Amsterdam, 2007), pp. 407–422.
[35] I. M. Gel’fand and D. A. Raikov, ”Irreducible Unitary Representations of Locally Bicompact Groups,” Mat. Sb. 13, 301–316 (1943) [Am. Math. Soc. Transl., Ser. 2, 36, 1–15 (1964)]. · Zbl 0063.01566
[36] I. Glicksberg, ”Uniform Boundedness for Groups,” Can. J. Math. 14, 269–276 (1962). · Zbl 0109.02001 · doi:10.4153/CJM-1962-017-3
[37] H. Glöckner and K.-H. Neeb, ”Minimally Almost Periodic Abelian Groups and Commutative W*-Algebras,” in Nuclear Groups and Lie Groups, Madrid, 1999 (Heldermann, Lemgo, 2001), Res. Expo. Math. 24, pp. 163–185.
[38] F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications (Van Nostrand, London, 1969; Mir, Moscow, 1973). · Zbl 0174.19001
[39] S. Grosser, R. Mosak, and M. Moskowitz, ”Duality and Harmonic Analysis on Central Topological Groups. I,” Nederl. Akad. Wet., Proc., Ser. A 76, 65–77 (1973). · Zbl 0267.22008
[40] S. Grosser, R. Mosak, and M. Moskowitz, ”Duality and Harmonic Analysis on Central Topological Groups. II,” Nederl. Akad. Wet., Proc., Ser. A 76, 78–91 (1973). · Zbl 0267.22008
[41] S. Grosser, R. Mosak, and M. Moskowitz, ”Correction to: Duality and Harmonic Analysis on Central Topological Groups,” Nederl. Akad. Wet., Proc., Ser. A 76, 375 (1973). · Zbl 0269.22008
[42] K. Grove, H. Karcher, and E. A. Ruh, ”Jacobi Fields and Finsler Metrics on Compact Lie Groups with an Application to Differentiable Pinching Problems,” Math. Ann. 211(1), 7–21 (1974). · Zbl 0273.53051 · doi:10.1007/BF01344138
[43] P. de la Harpe and M. Karoubi, ”Représentations approchées d’un groupe dans une algèbre de Banach,” Manuscr. Math. 22(3), 293–310 (1977). · Zbl 0371.22007 · doi:10.1007/BF01172669
[44] W. Herer and J. P. R. Christensen, ”On the Existence of Pathological Submeasures and the Construction of Exotic Topological Groups,” Math. Ann. 213, 203–210 (1975). · Zbl 0311.28002 · doi:10.1007/BF01350870
[45] S. Hernández and S. Macario, ”Invariance of Compactness for the Bohr Topology,” Topol. Appl. 111(1–2), 161–173 (2001). · Zbl 0969.22001 · doi:10.1016/S0166-8641(99)00196-0
[46] S. Hernández and T.-S. Wu, ”Some New Results on the Chu Duality of Discrete Groups,” Monatsh. Math. 149(3), 215–232 (2006). · Zbl 1162.22300 · doi:10.1007/s00605-006-0382-z
[47] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis (Springer, Berlin, 1979), Vol. 1. · Zbl 0416.43001
[48] H. Heyer, Dualität lokalkompakter Gruppen (Springer, Berlin, 1970), Lect. Notes Math. 150. · Zbl 0202.14003
[49] H. Heyer, ”Groups with Chu Duality,” in Probability and Information Theory. II (Springer, Berlin, 1973), Lect. Notes Math. 296, pp. 181–215. · Zbl 0259.43009
[50] R. M. Howe and T. Ton-That, ”Multiplicity, Invariants and Tensor Product Decompositions of Tame Representations of U(),” J. Math. Phys. 41(2), 991–1015 (2000). · Zbl 0970.22016 · doi:10.1063/1.533172
[51] V. de Magalhães Iório, ”Hopf-C*-Algebras and Locally Compact Groups,” Pac. J. Math. 87(1), 75–96 (1980). · Zbl 0394.22011 · doi:10.2140/pjm.1980.87.75
[52] I. M. Isaacs and D. S. Passman, ”Groups with Representations of Bounded Degree,” Can. J. Math. 16, 299–309 (1964). · Zbl 0124.26701 · doi:10.4153/CJM-1964-029-5
[53] B. E. Johnson, ”Approximately Multiplicative Maps between Banach Algebras,” J. London Math. Soc., Ser. 2, 37(2), 294–316 (1988). · Zbl 0652.46031 · doi:10.1112/jlms/s2-37.2.294
[54] A. Joyal and R. Street, ”An Introduction to Tannaka Duality and Quantum Groups,” in Category Theory, Como, 1990 (Springer, Berlin, 1991), Lect. Notes Math. 1488, pp. 413–492. · Zbl 0745.57001
[55] G. I. Kac, ”Generalization of the Group Principle of Duality,” Dokl. Akad. Nauk SSSR 138, 275–278 (1961) [Sov. Math., Dokl. 2, 581–584 (1961)]. · Zbl 0135.17301
[56] G. I. Kac, ”Compact and Discrete Ring Groups,” Ukr. Mat. Zh. 14, 260–270 (1962). · Zbl 0287.22002 · doi:10.1007/BF02526635
[57] B.-J. Kahng, ”Haar Measure on a Locally Compact Quantum Group,” J. Ramanujan Math. Soc. 18(4), 385–414 (2003). · Zbl 1064.46059
[58] I. Kaplansky, ”Groups with Representations of Bounded Degree,” Can. J. Math. 1, 105–112 (1949). · Zbl 0037.01603 · doi:10.4153/CJM-1949-011-9
[59] D. Kazhdan, ”On -Representations,” Isr. J. Math. 43(4), 315–323 (1982). · Zbl 0518.22008 · doi:10.1007/BF02761236
[60] A. A. Kirillov, ”Representations of an Infinite Dimensional Unitary Group,” Dokl. Akad. Nauk SSSR 212, 288–290 (1973) [Sov. Math., Dokl. 14, 1355–1358 (1973)]. · Zbl 0288.22020
[61] M. G. Krein, ”Duality Principle for a Bicompact Group and a Quadratic Block Algebra,” Dokl. Akad. Nauk SSSR 69, 725–728 (1949).
[62] J. Kustermans, ”Locally Compact Quantum Groups,” in Quantum Independent Increment Processes. I: From Classical Probability to Quantum Stochastic Calculus (Springer, Berlin, 2005), Lect. Notes Math. 1865, pp. 99–180. · Zbl 1072.46048
[63] J. Kustermans and S. Vaes, ”Locally Compact Quantum Groups,” Ann. Sci. Éc. Norm. Supér., Sér. 4, 33(6), 837–934 (2000). · Zbl 1034.46508
[64] J. Kustermans and S. Vaes, ”Locally Compact Quantum Groups in the von Neumann Algebraic Setting,” Math. Scand. 92(1), 68–92 (2003). · Zbl 1034.46067 · doi:10.7146/math.scand.a-14394
[65] A. T.-M. Lau and A. Ülger, ”Some Geometric Properties on the Fourier and Fourier-Stieltjes Algebras of Locally Compact Groups, Arens Regularity and Related Problems,” Trans. Am. Math. Soc. 337(1), 321–359 (1993). · Zbl 0778.43003
[66] G. W. Mackey, ”Infinite-Dimensional Group Representations,” Bull. Am. Math. Soc. 69, 628–686 (1963). · Zbl 0136.11502 · doi:10.1090/S0002-9904-1963-10973-8
[67] T. Masuda and Y. Nakagami, ”A von Neumann Algebra Framework for the Duality of the Quantum Groups,” Publ. Res. Inst. Math. Sci. 30(5), 799–850 (1994). · Zbl 0839.46055 · doi:10.2977/prims/1195165585
[68] H. B. Maynard, ”A Geometrical Characterization of Banach Spaces with the Radon-Nikodym Property,” Trans. Am. Math. Soc. 185, 493–500 (1973). · Zbl 0278.46040 · doi:10.1090/S0002-9947-1973-0385521-0
[69] C. C. Moore, ”Groups with Finite Dimensional Irreducible Representations,” Trans. Am. Math. Soc. 166, 401–410 (1972). · Zbl 0236.22010 · doi:10.1090/S0002-9947-1972-0302817-8
[70] M. A. Naimark and A. I. Štern, Theory of Group Representations (Springer, New York, 1982).
[71] I. Namioka and R. R. Phelps, ”Banach Spaces Which Are Asplund Spaces,” Duke Math. J. 42(4), 735–750 (1975). · Zbl 0332.46013 · doi:10.1215/S0012-7094-75-04261-1
[72] C.-K. Ng, ”Cohomology of Hopf C*-Algebras and Hopf von Neumann Algebras,” Proc. London Math. Soc., Ser. 3, 83(3), 708–742 (2001). · Zbl 1042.46044 · doi:10.1112/plms/83.3.708
[73] E. T. Ordman and S. A. Morris, ”Almost Locally Invariant Topological Groups,” J. London Math. Soc., Ser. 2, 9, 30–34 (1974). · Zbl 0289.22003 · doi:10.1112/jlms/s2-9.1.30
[74] M. Pahor, ”The Structure of Certain Group C*-Algebras,” Bull. Aust. Math. Soc. 47(1), 169–174 (1993). · Zbl 0806.22005 · doi:10.1017/S0004972700012375
[75] T. W. Palmer, ”Classes of Nonabelian, Noncompact, Locally Compact Groups,” Rocky Mt. J. Math. 8(4), 683–741 (1978). · Zbl 0396.22001 · doi:10.1216/RMJ-1978-8-4-683
[76] D. S. Passman, The Algebraic Structure of Group Rings (J. Wiley & Sons, New York, 1977).
[77] D. S. Passman and W. V. Temple, ”Groups with All Irreducible Modules of Finite Degree,” in Algebra: Proc. Int. Conf., Moscow, 1998 (W. de Gruyter, Berlin, 2000), pp. 263–279. · Zbl 0963.16021
[78] L. S. Pontrjagin, ”The Theory of Topological Commutative Groups,” Ann. Math., Ser. 2, 35(2), 361–388 (1934). · JFM 60.0362.02 · doi:10.2307/1968438
[79] L. S. Pontryagin, Continuous Groups (Nauka, Moscow, 1984); Engl. transl.: Topological Groups (Gordon and Breach, New York, 1986).
[80] I. Raeburn, ”On Group C*-Algebras of Bounded Representation Dimension,” Trans. Am. Math. Soc. 272 (2), 629–644 (1982). · Zbl 0511.22003
[81] D. Remus and F. J. Trigos-Arrieta, ”The Bohr Topology of Moore Groups,” Topol. Appl. 97(1–2), 85–98 (1999). · Zbl 0933.22008 · doi:10.1016/S0166-8641(98)00070-4
[82] L. C. Robertson, ”A Note on the Structure of Moore Groups,” Bull. Am. Math. Soc. 75, 594–599 (1969). · Zbl 0202.02901 · doi:10.1090/S0002-9904-1969-12252-4
[83] A. L. Rosenberg, ”Reconstruction of Groups,” Sel. Math., New Ser. 9(1), 101–118 (2003). · Zbl 1028.22006 · doi:10.1007/s00029-003-0322-x
[84] S. Sakai, C*-Algebras and W*-Algebras (Springer, Berlin, 1971).
[85] M. Sanchis, ”Continuous Functions on Locally Pseudocompact Groups,” Topol. Appl. 86(1), 5–23 (1998). · Zbl 0922.22001 · doi:10.1016/S0166-8641(97)00127-2
[86] H. H. Schaefer, Topological Vector Spaces (Macmillan, New York, 1966; Mir, Moscow, 1971). · Zbl 0141.30503
[87] G. Schlichting, ”Groups with Representations of Bounded Degree,” in Probability Measures on Groups: Proc. Conf., Oberwolfach, 1978 (Springer, Berlin, 1979), Lect. Notes Math. 706, pp. 344–348.
[88] G. Schlichting, ”Polynomidentitäten und Darstellungen von Gruppen,” Monatsh. Math. 90(4), 311–313 (1980). · Zbl 0435.22011 · doi:10.1007/BF01540850
[89] A. I. Shtern, ”Connection between the Topologies of a Locally Bicompact Group and Its Dual Space,” Funkts. Anal. Prilozh. 5(4), 56–63 (1971) [Funct. Anal. Appl. 5, 311–317 (1971)]. · Zbl 0226.35072 · doi:10.1007/BF01075848
[90] A. I. Shtern, ”Locally Bicompact Groups with Finite-Dimensional Irreducible Representations,” Mat. Sb. 90(1), 86–95 (1973) [Math. USSR, Sb. 19, 85–94 (1973)].
[91] A. I. Shtern, ”Compact Semitopological Semigroups and Reflexive Representability of Topological Groups,” Russ. J. Math. Phys. 2(1), 131–132 (1994). · Zbl 0908.22003
[92] A. I. Shtern, ”Roughness and Approximation of Quasi-representations of Amenable Groups,” Mat. Zametki 65(6), 908–920 (1999) [Math. Notes 65, 760–769 (1999)]. · Zbl 0952.43002 · doi:10.4213/mzm1126
[93] A. I. Shtern, ”Criteria for Weak and Strong Continuity of Representations of Topological Groups in Banach Spaces,” Mat. Sb. 193(9), 139–156 (2002) [Sb. Math. 193, 1381–1396 (2002)]. · doi:10.4213/sm682
[94] A. I. Shtern, ”Continuity of Banach Representations in Terms of Point Variations,” Russ. J. Math. Phys. 9(2), 250–252 (2002). · Zbl 1104.22300
[95] A. I. Shtern, ”Almost Periodic Functions and Representations in Locally Convex Spaces,” Usp. Mat. Nauk 60(3), 97–168 (2005) [Russ. Math. Surv. 60, 489–557 (2005)]. · Zbl 1119.43005 · doi:10.4213/rm1430
[96] A. I. Shtern, ”Topological Groups with Finite von Neumann Algebras of Type I,” Mat. Sb. 196(3), 143–160 (2005) [Sb. Math. 196, 447–463 (2005)]. · doi:10.4213/sm1279
[97] A. I. Shtern, ”Van der Waerden’s Continuity Theorem for the Commutator Subgroups of Connected Lie Groups and Mishchenko’s Conjecture,” Adv. Stud. Contemp. Math., Kyungshang 13(2), 143–158 (2006). · Zbl 1111.22007
[98] A. I. Shtern, ”Analog of van der Waerden’s Continuity Theorem and the Validity of Mishchenko’s Conjecture for Relatively Compact Homomorphisms of Arbitrary Locally Compact Groups,” Adv. Stud. Contemp. Math., Kyungshang 14(1), 1–20 (2007). · Zbl 1146.22011 · doi:10.1090/amsip/014/01
[99] A. I. Shtern, ”Finite-Dimensional Quasirepresentations of Connected Lie Groups and Mishchenko’s Conjecture,” Fundam. Prikl. Mat. 13(7), 85–225 (2007) [J. Math. Sci. 159 (5), 653–751 (2009)].
[100] A. I. Shtern, ”A Criterion for a Topological Group to Admit a Continuous Embedding in a Locally Compact Group,” Russ. J. Math. Phys. 15(2), 297–300 (2008). · Zbl 1176.22005 · doi:10.1134/S1061920808020131
[101] A. I. Shtern, ”Duality between the Compact and Discrete Objects for Noncommutative Topological Groups,” Adv. Stud. Contemp. Math., Kyungshang 16(2), 143–154 (2008). · Zbl 1154.43004
[102] A. I. Shtern, ”A Version of van der Waerden’s Theorem and a Proof of Mishchenko’s Conjecture on Homomorphisms of Locally Compact Groups,” Izv. Ross. Akad. Nauk, Ser. Mat. 72(1), 183–224 (2008) [Izv. Math. 72, 169–205 (2008)]. · Zbl 1158.22002 · doi:10.4213/im2599
[103] A. I. Shtern, ”Continuous Embeddings of Topological Groups in Locally Compact Groups,” in Sovrem. Probl. Mat. Mekh. (Mosk. Gos. Univ., Moscow, 2009), Vol. 2, Issue 1, pp. 89–98 [in Russian].
[104] A. I. Shtern, ”Freudenthal-Weil Theorem for Arbitrary Embeddings of Connected Lie Groups in Compact Groups,” Adv. Stud. Contemp. Math., Kyungshang 19(2), 157–164 (2009). · Zbl 1194.22007
[105] A. I. Shtern, ”Connected Lie Groups Having Faithful Locally Bounded (Not Necessarily Continuous) Finite-Dimensional Representations,” Russ. J. Math. Phys. 16(4), 566–567 (2009). · Zbl 1186.22016 · doi:10.1134/S1061920809040116
[106] C. Stegall, ”The Radon-Nikodym Property in Conjugate Banach Spaces. II,” Trans. Am. Math. Soc. 264(2), 507–519 (1981). · Zbl 0475.46016
[107] W. F. Stinespring, ”Integration Theorems for Gauges and Duality for Unimodular Groups,” Trans. Am. Math. Soc. 90, 15–56 (1959). · Zbl 0085.10202 · doi:10.1090/S0002-9947-1959-0102761-9
[108] M. Takesaki, ”A Characterization of Group Algebras as a Converse of Tannaka-Stinespring-Tatsuuma Duality Theorem,” Am. J. Math. 91, 529–564 (1969). · Zbl 0182.18103 · doi:10.2307/2373525
[109] T. Tannaka, ”Über den Dualitätssatz der nichtkommutativen topologischen Gruppen,” Tôhoku Math. J. 45, 1–12 (1938). · Zbl 0020.00904
[110] N. Tatsuuma, ”A Duality Theorem for Locally Compact Groups,” J. Math. Kyoto Univ. 6, 187–293 (1967). · Zbl 0184.17402 · doi:10.1215/kjm/1250524377
[111] K. F. Taylor, ”The Type Structure of the Regular Representation of a Locally Compact Group,” Math. Ann. 222(3), 211–224 (1976). · Zbl 0318.43005 · doi:10.1007/BF01362578
[112] K. F. Taylor, ”Geometry of the Fourier Algebras and Locally Compact Groups with Atomic Unitary Representations,” Math. Ann. 262(2), 183–190 (1983). · Zbl 0488.43009 · doi:10.1007/BF01455310
[113] E. Thoma, ”Über unitäre Darstellungen abzählbarer, diskreter Gruppen,” Math. Ann. 153(2), 111–138 (1964). · Zbl 0136.11603 · doi:10.1007/BF01361180
[114] E. Thoma, ”Eine Charakterisierung diskreter Gruppen vom Typ I,” Invent. Math. 6, 190–196 (1968). · Zbl 0169.03802 · doi:10.1007/BF01404824
[115] M. G. Tkachenko, ”Boundedness and Pseudocompactness in Topological Groups,” Mat. Zametki 41(3), 400–405 (1987) [Math. Notes 41, 229–231 (1987)]. · Zbl 0622.22001
[116] S. Vaes and A. Van Daele, ”Hopf C*-Algebras,” Proc. London Math. Soc., Ser. 3, 82(2), 337–384 (2001). · Zbl 1028.46100 · doi:10.1112/S002461150101276X
[117] L. Vainerman, ”The Bicrossed Product Construction for Locally Compact Quantum Groups,” Bull. Kerala Math. Assoc., Spec. Issue, 99–136 (2007); arXiv:math/0510411v1.
[118] J.-M. Vallin, ”C*-algèbres de Hopf et C*-algèbres de Kac,” Proc. London Math. Soc., Ser. 3, 50(1), 131–174 (1985). · Zbl 0577.46063 · doi:10.1112/plms/s3-50.1.131
[119] N. Ya. Vilenkin, ”Notes of the Translation Editor,” in A. Weil, Integration in Topological Groups and Its Applications (Inostrannaya Literatura, Moscow, 1950), pp. 167–211 [in Russian].
[120] W. C. Waterhouse, ”Dual Groups of Vector Spaces,” Pac. J. Math. 26(1), 193–196 (1968). · Zbl 0162.44102 · doi:10.2140/pjm.1968.26.193
[121] A. Weil, Sur les espaces à structure uniforme et sur la topologie génèrale (Hermann, Paris, 1937). · JFM 63.0569.04
[122] A. Weil, L’intégration dans les groupes topologiques et ses applications, 2nd ed. (Hermann, Paris, 1953), Actual. Sci. Industr., No. 1145.
[123] D. Yost, ”Asplund Spaces for Beginners,” Acta Univ. Carol., Math. Phys. 34(2), 159–177 (1993). · Zbl 0815.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.