×

Stabilizing populations with adaptive limiters: prospects and fallacies. (English) Zbl 1301.92062

Summary: Adaptive limiter control has been proposed as a method for stabilizing fluctuations in unstable population dynamics. This method invokes a dynamic thresholding and restocks the population if it falls below a certain proportion of its previous size. The reference state for the adaptive threshold can be the previous population size after (ALC) or before (ALCb) intervention. The former has been tested experimentally and analyzed theoretically, whereas the latter has been proposed for biological populations but not yet studied. Here, we investigate the consequences of choosing a different basis for adaptive limiter control. We thoroughly explain the mechanisms that allow ALCb to reduce the magnitude of population fluctuations under certain conditions. However, we also find that ALCb may be counterproductive in other situations, actually increasing fluctuations and extinction risk. We show that this effect is further promoted by an alternative attractor with undesirable properties. The bistability is triggered by basing the adaptive threshold on a different reference population size. The results in this paper highlight the importance of making correct references to system states in the past and the dramatic consequences this can have in chaos control schemes. In the ecological application, a desirable support intervention might backfire into unintended extinction.

MSC:

92D25 Population dynamics (general)
37N25 Dynamical systems in biology
37N35 Dynamical systems in control
Full Text: DOI

References:

[1] B. R. Andrievskii and A. L. Fradkov, {\it Control of chaos: Methods and applications. \textupI. Methods}, Automat. Remote Control, 64 (2003), pp. 673-713. · Zbl 1107.37302
[2] M. \AAström, P. Lundberg, and S. Lundberg, {\it Population dynamics with sequential density-dependencies}, Oikos, 75 (1996), pp. 174-181.
[3] L. Becks, F. M. Hilker, H. Malchow, K. Jürgens, and H. Arndt, {\it Experimental demonstration of chaos in a microbial food web}, Nature, 435 (2005), pp. 1226-1229.
[4] E. Benincà, J. Huisman, R. Heerkloss, K. D. Jöhnk, P. Branco, E. H. Van Nes, M. Scheffer, and S. P. Ellner, {\it Chaos in a long-term experiment with a plankton community}, Nature, 451 (2008), pp. 822-825.
[5] M. Bernardo, C. Budd, A. R. Champneys, and P. Kowalczyk, {\it Piecewise-Smooth Dynamical Systems: Theory and Applications}, Springer, New York, 2007. · Zbl 1146.37003
[6] C. Bick, M. Timme, and C. Kolodziejski, {\it Adapting predictive feedback chaos control for optimal convergence speed}, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 1310-1324. · Zbl 1263.37089
[7] S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, and D. Maza, {\it The control of chaos: Theory and applications}, Phys. Rep., 329 (2000), pp. 103-197.
[8] E. N. Bodine, L. J. Gross, and S. Lenhart, {\it Order of events matter: Comparing discrete models for optimal control of species augmentation}, J. Biol. Dyn., 6 (2012), pp. 31-49. · Zbl 1448.92176
[9] \AA. Brännström and D. J. T. Sumpter, {\it Stochastic analogues of deterministic single-species population models}, Theor. Popul. Biol., 69 (2006), pp. 442-451. · Zbl 1120.92032
[10] E. Braverman and E. Liz, {\it Global stabilization of periodic orbits using a proportional feedback control with pulses}, Nonlinear Dynam., 67 (2012), pp. 2467-2475. · Zbl 1243.93087
[11] P. Carmona and D. Franco, {\it Control of chaotic behaviour and prevention of extinction using constant proportional feedback}, Nonlinear Anal. Real World Appl., 12 (2011), pp. 3719-3726. · Zbl 1231.93057
[12] G. Chen and X. Dong, {\it From chaos to order? Perspectives and methodologies in controlling chaotic nonlinear dynamical systems}, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 3 (1993), pp. 1363-1409. · Zbl 0886.58076
[13] B. Cid, F. M. Hilker, and E. Liz, {\it Harvest timing and its population dynamic consequences in a discrete single-species model}, Math. Biosci., 248 (2014), pp. 78-87. · Zbl 1314.92124
[14] N. Corron, X.-Z. He, and F. Westerhoff, {\it Butter mountains, milk lakes and optimal price limiters}, Appl. Econom. Lett., 14 (2007), pp. 1131-1136.
[15] N. J. Corron, S. D. Pethel, and B. A. Hopper, {\it Controlling chaos with simple limiters}, Phys. Rev. Lett., 84 (2000), pp. 3835-3838.
[16] N. J. Corron, S. D. Pethel, and K. Myneni, {\it Synchronizing the information content of a chaotic map and flow via symbolic dynamics}, Phys. Rev. E, 66 (2002), 036204.
[17] M. I. S. Costa and L. B. Faria, {\it Induced oscillations generated by protective threshold policies in the management of exploited populations}, Nat. Resour. Model., 24 (2011), pp. 183-206.
[18] R. F. Costantino, J. M. Cushing, B. Dennis, and R. A. Desharnais, {\it Experimentally induced transitions in the dynamic behaviour of insect populations}, Nature, 375 (1995), pp. 227-230.
[19] F. Courchamp, L. Berec, and J. Gascoigne, {\it Allee Effects in Ecology and Conservation}, Oxford University Press, Oxford, UK, 2008.
[20] J. Dattani, J. C. H. Blake, and F. M. Hilker, {\it Target-oriented chaos control}, Phys. Lett. A, 375 (2011), pp. 3986-3992. · Zbl 1254.92075
[21] R. A. Desharnais, R. F. Costantino, J. M. Cushing, S. M. Henson, and B. Dennis, {\it Chaos and population control of insect outbreaks}, Ecol. Lett., 4 (2001), pp. 229-235.
[22] S. Dey and A. Joshi, {\it Stability via asynchrony in {\it Drosophila} metapopulations with low migration rates}, Science, 312 (2006), pp. 434-436.
[23] D. Franco and F. M. Hilker, {\it Adaptive limiter control of unimodal population maps}, J. Theoret. Biol., 337 (2013), pp. 161-173. · Zbl 1411.92247
[24] D. Franco and J. Perán, {\it Stabilization of population dynamics via threshold harvesting strategies}, Ecol. Complex., 14 (2013), pp. 85-94.
[25] L. Glass and W. Zeng, {\it Bifurcations in flat-topped maps and the control of cardiac chaos}, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), pp. 1061-1067. · Zbl 0877.92007
[26] J. Güémez and M. A. Matias, {\it Control of chaos in unidimensional maps}, Phys. Lett. A, 181 (1993), pp. 29-32.
[27] X.-Z. He and F. H. Westerhoff, {\it Commodity markets, price limiters and speculative price dynamics}, J. Econom. Dynam. Control, 29 (2005), pp. 1577-1596. · Zbl 1198.91161
[28] S. M. Henson, R. F. Costantino, J. M. Cushing, R. A. Desharnais, B. Dennis, and A. A. King, {\it Lattice effects observed in chaotic dynamics of experimental populations}, Science, 294 (2001), pp. 602-605.
[29] F. M. Hilker and E. Liz, {\it Harvesting, census timing and “hidden” hydra effects}, Ecol. Complex., 14 (2013), pp. 95-107.
[30] F. M. Hilker and F. H. Westerhoff, {\it Control of chaotic population dynamics: Ecological and economic considerations}, Beiträge des Instituts für Umweltsystemforschung, 32 (2005).
[31] F. M. Hilker and F. H. Westerhoff, {\it Paradox of simple limiter control}, Phys. Rev. E, 73 (2006), 052901.
[32] N. Jonzén and P. Lundberg, {\it Temporally structured density dependence and population management}, Ann. Zool. Fennici, 36 (1999), pp. 39-44.
[33] E. J. Kostelich, {\it Targeting in chaotic dynamical systems}, in Handbook of Chaos Control, H. G. Schuster, ed., Wiley-VCH Verlag, Weinheim, Germany, 1999, pp. 141-156. · Zbl 0958.93045
[34] M. R. S. Kulenović and G. Ladas, {\it Dynamics of Second Order Rational Difference Equations}, Chapman & Hall/CRC Press, Boca Raton, FL, 2002. · Zbl 0981.39011
[35] E. Liz and D. Franco, {\it Global stabilization of fixed points using predictive control}, Chaos, 20 (2010), 023124. · Zbl 1311.93072
[36] F. Lutscher and S. V. Petrovskii, {\it The importance of census times in discrete-time growth-dispersal models}, J. Biol. Dyn., 2 (2008), pp. 55-63. · Zbl 1140.92029
[37] H. I. McCallum, {\it Effects of immigration on chaotic population dynamics}, J. Theoret. Biol., 154 (1992), pp. 277-284.
[38] K. Myneni, T. A. Barr, N. J. Corron, and S. D. Pethel, {\it New method for the control of fast chaotic oscillations}, Phys. Rev. Lett., 83 (1999), pp. 2175-2178.
[39] S. D. Pethel, N. J. Corron, Q. R. Underwood, and K. Myneni, {\it Information flow in chaos synchronization: Fundamental tradeoffs in precision, delay, and anticipation}, Phys. Rev. Lett., 90 (2003), 254101.
[40] W. E. Ricker, {\it Stock and recruitment}, J. Fisheries Board of Canada, 11 (1954), pp. 559-623.
[41] P. Sah, J. P. Salve, and S. Dey, {\it Stabilizing biological populations and metapopulations through adaptive limiter control}, J. Theoret. Biol., 320 (2013), pp. 113-123. · Zbl 1406.92517
[42] E. Schöll and H. G. Schuster, eds., {\it Handbook of Chaos Control}, Wiley-VCH, Weinheim, Germany, 2008. · Zbl 1130.93001
[43] S. J. Schreiber, {\it Chaos and population disappearances in simple ecological models}, J. Math. Biol., 42 (2001), pp. 239-260. · Zbl 0977.92032
[44] S. Sinha and D. Biswas, {\it Adaptive dynamics on a chaotic lattice}, Phys. Rev. Lett., 71 (1993), pp. 2010-2013.
[45] S. Sinha and W. L. Ditto, {\it Dynamics based computation}, Phys. Rev. Lett., 81 (1998), pp. 2156-2159.
[46] R. V. Solé, J. G. P. Gamarra, M. Ginovart, and D. López, {\it Controlling chaos in ecology: From deterministic to individual-based models}, Bull. Math. Biol., 61 (1999), pp. 1187-1207. · Zbl 1323.92220
[47] R. Stoop and C. Wagner, {\it Scaling properties of simple limiter control}, Phys. Rev. Lett., 90 (2003), 154101.
[48] C. Wagner and R. Stoop, {\it Optimized chaos control with simple limiters}, Phys. Rev. E, 63 (2001), 017201.
[49] C. T. Zhou and M. Y. Yu, {\it Comparison between constant feedback and limiter controllers}, Phys. Rev. E, 71 (2005), 016204.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.