×

Space gradiometry: tensor-valued ellipsoidal harmonics, the datum problem and application of the Lusternik-Schnirelmann category to construct a minimum atlas. (English) Zbl 1301.86016

Summary: Our contribution deals with three topics, namely (1) the tensor of gravity gradients in ellipsoidal harmonics, (2) the corresponding datum problem and (3) the construction of a minimum atlas in terms of ellipsoidal harmonics of Jacobi type following the basic result of the theory of the Lusternik-Schnirelmann category.

MSC:

86A30 Geodesy, mapping problems
35Q86 PDEs in connection with geophysics
00A69 General applied mathematics
34A26 Geometric methods in ordinary differential equations
Full Text: DOI

References:

[1] Backus G.E.: Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys. J. R. Astron. Soc. 13, 61–101 (1967) · Zbl 0189.26002 · doi:10.1111/j.1365-246X.1967.tb02146.x
[2] Baur O., Grafarend E.: Orbital rotations of a satellite: case study: GOCE. Artif. Satell. 40, 87–107 (2005)
[3] Bühler W.K.: Gauss: A Biographical Study. Springer, Berlin (1981) · Zbl 0455.01001
[4] Bölling K., Grafarend E.: Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J. Geodesy 79, 265–269 (2005) · Zbl 1158.86313 · doi:10.1007/s00190-005-0465-y
[5] Casotto S., Fantino E.: Gravitational gradients by tensor analysis with application to spherical coordinates. J. Geodesy 83, 621–634 (2009) · doi:10.1007/s00190-008-0276-z
[6] Chandrasekhar S.: Ellipsoidal Figures of Equilibrium. Yale University Press, New Haven (1969) · Zbl 0213.52304
[7] Freeman, K.C.: Structure and evolution of barred spiral galaxies I. Mon. Not. R. Astron. Soc. I 133, 47–62, II 134, 1–14, III 134, 19–23 (1966)
[8] Grafarend, E.: The geometry of the Earth’s surface and the corresponding function space of the terrestrial gravitational field. Report B 287, Deutsche Geodätische Kommission, Bayerische Akademie der Wissenschaften, Festschrift Rudolf Sigl zum 60, pp. 76–94. Geburtstag, München (1988)
[9] Grafarend, E.: Boundary Value Problems and the Modelling of the Earth’s Gravity Field in view of the one centimetre Geoid. International school of Theoretical Geodesy. In: Sanso, F. (ed.) Special Lectures on Vector- and Tensor-Valued Gravity Functionals. Helmholtz Decomposition Theorems in Terms of Exterior Calculus. Como (1991)
[10] Grafarend E.: Gauss’sche flächennormale Koordinaten im Geometrie- und Schwereraum. Erster Teil: Flächennormale Ellipsoidkoordinaten. Zeitschrift für Vermessungswesen 125, 136–139 (2000a)
[11] Grafarend E.: Time varying gravitational potential field of a massive deformable body. Stud. Geoph. Geod. 44, 364–373 (2000b) · doi:10.1023/A:1022108420086
[12] Grafarend E.: Gauss surface normal coordinates in geometry and gravity space. Part 2. Zeitschrift für Vermessungswesen 126, 372–382 (2001)
[13] Grafarend E., Ardalan A.A.: Ellipsoidal geoidal undulations (ellipsoidal Bruns formula): case studie. J. Geodesy. 75, 544–552 (2001) · Zbl 1049.86007 · doi:10.1007/s001900100186
[14] Grafarend, E., Engels, J.: A global representation of ellipsoidal heights, part I: amplitude modified spherical harmonic functions, part II: phase modified spherical harmonic functions. Manuscipta Geodaetica (Springer Verlag) 12, 52–58, 59–62 (1992)
[15] Grafarend E., Hauer K.H.: The equilibrium figure of the Earth I. Bull. Geodesique 52, 267–291 (1978)
[16] Grafarend E.W., Krumm F.W.: Map Projections–Cartographic Information Systems, pp. 713. Springer, Berlin (2006) · Zbl 1134.86001
[17] Grafarend E.W., Lohse P.: The minimal distance mapping of the topographic surface onto the reference ellipsoid of revolution. Manuscipta Geosdaetica 16, 92–110 (1991)
[18] Hauer K.H.: The equilibrium figure of the Earth II, application of Chandrasekhar’s virial method to stability investigation. Manuscipta Geosdaetica 4, 287–307 (1971)
[19] Hobson E.W.: The Theory of Spherical and Ellipsoidal Harmonics, 2nd edn. Chelsea Publ. Corp., New York (1965) · Zbl 0004.21001
[20] Holota, P.: Classical methods for non-spherical boundary problems in physical geodesy. In: Sanso (ed.) Symp., p. 114 (1995)
[21] Jacobi, C.G.J.: Über die Figur des Gleichgewichtes. Poggendorff Annalen der Physik Und Chemie 33, 229–238 (1834) · ERAM 012.0447cj · doi:10.1002/andp.18341090808
[22] James, R.W.: New tensor spherical harmonics. Philos. Trans. R. Soc. London A (1976) · Zbl 0323.76021
[23] Jones M.N.: Spherical Harmonics and Tensors for Classical Field Theory. Research Studies Press, UK (1985) · Zbl 0589.43011
[24] Lichtenstein L.: Gleichgewichtsfiguren rotierender Flnssigkeiten. Springer, Berlin (1933) · JFM 59.1441.12
[25] Martinec Z.: Green’s function solution to spherical gradiometric boundary-value problems. J. Geodesy 77, 41–49 (2003) · Zbl 1055.86003 · doi:10.1007/s00190-002-0288-z
[26] Martinec Z., Grafarend E.: Solution to the Stokes boundary-value problem on an ellipsoid of revolution. Studia geoph. geod. 41, 103–129 (1997) · Zbl 1027.86007 · doi:10.1023/A:1023380427166
[27] Martinec Z., Grafarend E.: Construction of Green’s function to the external Dirichlet boundary-value problem for the Laplace equation of an ellipsoid of revolution. J. Geodesy 71, 562–570 (1997) · Zbl 1003.86526 · doi:10.1007/s001900050124
[28] Martinec Z., Grafarend E.: Separability conditions for the vector Helmholtz equation. Bollettino di Geodesia e Scienze Affini 61, 53–61 (2002)
[29] Moon P., Spencer D.F.: Recent investigation of the separation of the Laplace’s equation. Am. Math. Soc. Proc. 4, 302–307 (1953) · Zbl 0051.32902
[30] Moon P., Spencer D.F.: Field Theory for Engineers. Van Nostrand Corp., Princeton (1961) · Zbl 0126.40002
[31] Otero, J.: A uniqueness theorem for a Robin boundary value problem of physical geodesy. Q. J. Appl. Math. (1995)
[32] Phinney, R.A., Burridge, R: Representation of the elastic-gravitational excitation of a spherical Earth model by generated spherical harmonics. Geophys. J. R. Astron. Soc. (1973) · Zbl 0287.73065
[33] Pizzetti P.: Geodesia-sulla espressione della gravity alla superficie del geoide, supposto ellipsoidico. Atti Reale Accademia del Lincei 3, 166–172 (1894) · JFM 25.1509.01
[34] Regge T., Wheeler J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957) · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[35] Rummel R., van Gelderen M.: Spectral analysis of the full gravity tensor. Geophys. J. Int. 111, 159–169 (1992) · doi:10.1111/j.1365-246X.1992.tb00562.x
[36] Schreiner, M.: Tensor spherical harmonics and their application in satellite gradiometry. Ph.D. thesis, University of Kaiserslautern. Fachbereich Mathematik (1994)
[37] Somigliana, C.: Teoria generale del campo gravitionale dell’s ellipsoide. Mem. Soc. Astr. Ital. IV (1929)
[38] Takens F.: The minimum number of critical points of a function on a compact manifold and the Lusternik-Schnirelmann Category. Invent. Math. 6, 197–244 (1968) · Zbl 0198.56603 · doi:10.1007/BF01404825
[39] Thong, N.C.: Untersuchungen zur Lösung der freien gravimetrischen Randwertprobleme mittels sphäroidaler und Greenscher Funktionen. In: Deutsche Geodätische Kommission, Bayerische Akademie der Wissenschaften, Reihe C 399, München (1993)
[40] Thong N.C., Grafarend E.: A spheroidal harmonic model of the terrestrial gravitational field. Manuscipta Geosdaetica 14, 285–304 (1989)
[41] Tscherning, C.C., Arabelos, D.N.: Computation of a geopotential model from GOCE data using fast spherical collocation–a simulation study. In: IAG Proceedings, vol. 128, pp. 310–313. Springer, Berlin (2004)
[42] Tscherning, C.C., Veicherts, M., Arabelos, D.: Calibration of GOCE gravity gradient data using smooth ground gravity. In: Knudsen, P., Johannessen, J., Gruber, T., Stammer, S., van Dam, T. (eds.) Proceedings of the Workshop GOCINA: Improving Modelling of Ocean Transport and Climate Prediction in the North Atlantic Region using GOCE Gravimetry, vol. 25, pp. 63–67 (2005)
[43] van Gelderen M., Rummel R.: The solution of the general geodetic boundary value problem by least-squares. J. Geodesy 75, 1–11 (2001) · Zbl 1029.86004 · doi:10.1007/s001900000146
[44] van Gelderen M., Rummel R.: Correction to ”The solution of the general geodetic boundary value problem by least-squares”. J. Geodesy 76, 121–122 (2002) · doi:10.1007/s00190-001-0229-2
[45] Varshalovich D.A., Moskalev A.N., Khersonski V.K.: Quantum Theory of Angular Momentum. World Scientific Publishing, Singapore (1989) · Zbl 0725.00003
[46] Zerilli F.J.: Tensor harmonics in canonical form for gravitational radiation and other applications. J. Math. Phys. 71, 2203–2208 (1970) · doi:10.1063/1.1665380
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.