×

A thermodynamic formalism for continuous time Markov chains with values on the Bernoulli space: entropy, pressure and large deviations. (English) Zbl 1301.82005

“Through this paper we analyze the ergodic properties of continuous time Markov chains with values on the one-dimensional spin lattice \(\{1,\dots,d\}^N\) (also known as the Bernoulli space). Initially, we consider as the infinitesimal generator the operator \(L=\mathfrak{L}_A-I\), where \(\mathfrak{L}_A\) is a discrete time Ruelle operator (transfer operator), and \(A:\{1,\dots,d\}^N\to\mathbb{R}\) is a given fixed Lipschitz function. The associated continuous time stationary Markov chain defines the a priori probability.
Given a Lipschitz interaction \(V:\{1,\dots,d\}^N\to\mathbb{R}\), we are interested in the Gibbs (equilibrium) state for such \(V\). This is another continuous time stationary Markov chain. In order to analyze this problem we use a continuous time Ruelle operator (transfer operator) naturally associated to \(V\). Among other things we show that a continuous time Perron-Frobenius theorem is true in the case \(V\) is a Lipschitz function.”
“We also introduce an entropy, which is negative (see also [A. O. Lopes et al., “Entropy and variational principle for one-dimensional lattice systems with a general a-priori probability: positive and zero temperature”, arXiv:1210.3391]), and we consider a variational principle of pressure. Finally, we analyze large deviations properties for the empirical measure in the continuous time setting using results by Y. Kifer [Trans. Am. Math. Soc. 321, No. 2, 505–524 (1990; Zbl 0714.60019)]. In the last appendix of the paper we explain why the techniques we develop here have the capability to be applied to the analysis of convergence of a certain version of the Metropolis algorithm.”

MSC:

82B05 Classical equilibrium statistical mechanics (general)
60J27 Continuous-time Markov processes on discrete state spaces
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems

Citations:

Zbl 0714.60019

References:

[1] Baraviera, A., Leplaideur, R., Lopes, A.O.: Selection of ground states in the zero temperature limit for a one-parameter family of potentials. SIAM J. Appl. Dyn. Syst. 11(1), 243-260 (2012) · Zbl 1246.37014 · doi:10.1137/110826333
[2] Baraviera, A., Exel, R., Lopes, A.: A Ruelle Operator for continuous time Markov chains. São Paulo J. Math. Sci. 4(1), 1-16 (2010) · Zbl 1242.37006
[3] Baraviera, A.T., Cioletti, L.M., Lopes, A., Mohr, J., Souza, R.R.: On the general one dimensional XY model: positive and zero temperature, selection and non-selection. Rev. Math. Phys. 23(10), 1063-1113 (2011) · Zbl 1362.37022 · doi:10.1142/S0129055X11004527
[4] Baladi, V.: Positive Transfer Operators and Decay of Correlations. World Scientific, Singapore (2000) · Zbl 1012.37015
[5] Baladi, V., Smania, D.: Linear response formula for piecewise expanding unimodal maps. Nonlinearity 21(4), 677-711 (2008) · Zbl 1140.37008 · doi:10.1088/0951-7715/21/4/003
[6] Berger, N., Kenyon, C., Mossel, E., Peres, Y.: Glauber dynamics on trees and hyperbolic graphs. Probab. Theory Relat. Fields 131(3), 311-340 (2005) · Zbl 1075.60003 · doi:10.1007/s00440-004-0369-4
[7] Contreras, G., Lopes e, A.O., Thieullen, Ph.: Lyapunov minimizing measures for expanding maps of the circle. Ergod. Theory Dyn. Syst. 21, 1379-1409 (2001) · Zbl 0997.37016 · doi:10.1017/S0143385701001663
[8] Craizer, M.: Teoria Ergódica das Transformações expansoras. Master dissertation, IMPA, Rio de Janeiro (1985)
[9] Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, Berlin (1998) · Zbl 0896.60013 · doi:10.1007/978-1-4612-5320-4
[10] Donsker, M., Varadhan, S.: Asymptotic evaluation of certain Markov process expectations for large time I. Commun. Pure Appl. Math. 28, 1-47 (1975) · Zbl 0323.60069 · doi:10.1002/cpa.3160280102
[11] Deutschel, J.-D., Stroock, D.: Large Deviations. AMS, Berlin (1989) · Zbl 0705.60029
[12] den Hollander, F.: Large Deviations. AMS, Providence (2000) · Zbl 0949.60001
[13] Diaconis I, P., Saloff-Coste, L.: Nash inequalities for finite Markov chains. J. Theor. Probab. 9(2) (1996) · Zbl 0870.60064
[14] Diaconis, P., Saloff-Coste, L.: What do we know about the Metropolis algorithm? J. Comput. Syst. Sci. 57(1), 2-36 (1998). 27th Annual ACM Symposium on the Theory of Computing (STOC 95) (Las Vegas, NV) · Zbl 0920.68054 · doi:10.1006/jcss.1998.1576
[15] Dupuis, P., Liu, Y.: On the large deviation rate function for the empirical measures of reversible jump Markov processes. Arxiv (2013) · Zbl 1325.60023
[16] Ellis, R.: Entropy, Large Deviations, and Statistical Mechanics Springer, Berlin · Zbl 0566.60097
[17] Ethier, S.N., Kurtz, T.G.: Markov Processes—Characterization and Convergence. Wiley, New York (2005) · Zbl 1089.60005
[18] Feng, J., Kurtz, T.: Large Deviations for Stochastic Processes. AMS, Providence (2006) · Zbl 1113.60002
[19] Kifer, Y.: Large deviations in dynamical systems and stochastic processes. Tamsui Oxf. J. Manag. Sci. 321(2), 505-524 (1990) · Zbl 0714.60019
[20] Kifer, Y.: Principal eigenvalues, topological pressure, and stochastic stability of equilibrium states. Isr. J. Math. 70(I), 1-47 (1990) · Zbl 0732.58037 · doi:10.1007/BF02807217
[21] Landim, C., Kipnis, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, vol. 320. Springer, Berlin (1999) · Zbl 0927.60002
[22] Lebeau, G.: Introduction a l’analyse de l’algorithme de Metropolis. Preprint. http://math.unice.fr/ sdescomb/MOAD/CoursLebeau.pdf · Zbl 1081.60562
[23] Leonard, C.: Large deviations for Poisson random measures and processes with independent increments. Stoch. Process. Appl. 85, 93-121 (2000) · Zbl 0997.60017 · doi:10.1016/S0304-4149(99)00067-8
[24] Liggett, T.: Continuous Time Markov Processes. AMS, Providence (2010) · Zbl 1205.60002
[25] Lopes, A., Mengue, J., Mohr, J., Souza, R.R.: Entropy and Variational Principle for one-dimensional Lattice Systems with a general a-priori probability: positive and zero temperature. Arxiv (2012) · Zbl 1352.37090
[26] Lopes, A.O.: An analogy of the charge on distribution on Julia sets with the Brownian motion. J. Math. Phys. 30(9), 2120-2124 (1989) · Zbl 0673.60085 · doi:10.1063/1.528213
[27] Lopes, A.O.: Entropy and large deviations. Nonlinearity 3(2), 527-546 (1990) · Zbl 0703.58032 · doi:10.1088/0951-7715/3/2/013
[28] Lopes, A.O., Mohr, J., Souza, R., Thieullen, Ph.: Negative entropy, zero temperature and stationary Markov chains on the interval. Bull. Braz. Math. Soc. 40, 1-52 (2009) · Zbl 1181.60114 · doi:10.1007/s00574-009-0001-4
[29] Lopes, A.O.: Thermodynamic formalism, maximizing probabilities and large deviations. Lecture Notes—Dynamique en Cornouaille (2012, in press)
[30] Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187-188 (1990) · Zbl 0726.58003
[31] Protter, P.: Stochastic Integration and Differential Equations. Springer, Berlin (1990) · Zbl 0694.60047 · doi:10.1007/978-3-662-02619-9
[32] Randall, D., Tetali, P.: Analyzing Glauber dynamics by comparison of Markov chains. J. Math. Phys. 41(3), 1598-1615 (2000) · Zbl 0974.60052 · doi:10.1063/1.533199
[33] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999) · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9
[34] Ruelle, D.: Thermodynamic Formalism. Addison-Wesley, Reading (1978) · Zbl 0401.28016
[35] Stroock, D.: An Introduction to Markov Processes. Springer, Berlin (2000) · Zbl 1068.60003
[36] Stroock, D.: An Introduction to the Theory of Large Deviations Springer, Berlin · Zbl 0552.60022
[37] Stroock, D., Zegarlinski, B.: On the ergodic properties of Glauber dynamics. J. Stat. Phys. 81(5-6), 1007-1019 (1995) · Zbl 1081.60562 · doi:10.1007/BF02179301
[38] Yoshida, K.: Functional Analysis. Springer, Berlin (1978) · Zbl 0365.46001 · doi:10.1007/978-3-642-96439-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.