×

KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. (English) Zbl 1301.76075

Summary: Hydrothermal behavior of nanofluid fluid between two parallel plates is studied. One of the plates is externally heated, and the other plate, through which coolant fluid is injected, expands or contracts with time. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL correlation. The effects of the nanoparticle volume fraction, Reynolds number, Expansion ratio and power law index on Hydrothermal behavior are investigated. Results show that heat transfer enhancement has direct relationship with Reynolds number when power law index is equals to zero but opposite trend is observed for other values of power law index.

MSC:

76S05 Flows in porous media; filtration; seepage
80A20 Heat and mass transfer, heat flow (MSC2010)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
82D80 Statistical mechanics of nanostructures and nanoparticles
60J65 Brownian motion
Full Text: DOI

References:

[1] Choi, S. U.S., Enhancing thermal conductivity of fluids with nanoparticles, (Siginer, D. A.; Wang, H. P., Developments and Applications of Non-Newtonian Flows, FED-vol. 231/MD-vol. 66 (1995), ASME: ASME New York), 99-105
[2] Sheikholeslami, Mohsen; Abelman, Shirley; Domiri Ganji, Davood, Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation, Int. J. Heat Mass Transf., 79, 212-222 (2014)
[3] Rashidi, M. M.; Abelman, S.; Freidooni Mehr, N., Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transf., 62, 515-525 (2013)
[4] Hatami, Mohammad; Sheikholeslami, Mohsen; Hosseini, M.; Domiri Ganji, Davood, Analytical investigation of MHD nanofluidflow in non-parallel walls, J. Mol. Liq., 194, 251-259 (2014)
[5] Sheikholeslami, Mohsen; Gorji Bandpy, Mofid; Ellahi, R.; Zeeshan, A., Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces, J. Magn. Magn. Mater., 369, 69-80 (2014)
[6] Ellahi, R., The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions, Appl. Math. Model., 37, 3, 1451-1467 (2013) · Zbl 1351.76306
[7] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D., MHD free convection in an eccentric semi-annulus filled with nanofluid, J. Chin. Inst. Chem. Eng., 45, 1204-1216 (2014)
[8] Hayat, T.; Abbasi, F. M.; Al-Yami, Maryem; Monaquel, Shatha, Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects, J. Mol. Liq., 194, 93-99 (2014)
[9] Sheikholeslami, Mohsen; Gorji-Bandpy, Mofid, Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field, Powder Technol., 256, 490-498 (2014)
[10] Sheikholeslami, Mohsen; Domiri Ganji, Davood; Younus Javed, M.; Ellahi, R., Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model, J. Magn. Magn. Mater., 374, 36-43 (2015)
[11] Sheikholeslami, Mohsen; Domiri Ganji, Davood, Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer, Energy, 75, 400-410 (2014)
[12] Sheikholeslami, Mohsen; Domiri Ganji, Davood, Unsteady nanofluid flow and heat transfer in presence of magnetic field considering thermal radiation, J. Braz. Soc. Mech. Sci. Eng. (2014) · Zbl 1423.76277
[13] Sheikholeslami, M.; Gorji-Bandpay, M.; Ganji, D. D., Investigation of nanofluid flow and heat transfer in presence of magnetic field using KKL model, Arab. J. Sci. Eng., 39, 6, 5007-5016 (2014)
[14] Ellahi, R.; Mubashir Bhatti, M.; Riaz, Arshad; Sheikholeslami, M., Effects of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium, J. Porous Media, 17, 2, 143-157 (2014)
[15] Kherbeet, A. Sh.; Mohammed, H. A.; Salman, B. H., The effect of nanofluids flow on mixed convection heat transfer over microscale backward-facing step, Int. J. Heat Mass Transf., 55, 5870-5881 (2012)
[16] Kherbeet, A. Sh.; Mohammed, H. A.; Munisamy, K. M.; Salman, B. H., The effect of step height of microscale backward-facing step on mixed convection nanofluid flow and heat transfer characteristics, Int. J. Heat Mass Transf., 68, 554-566 (2014)
[17] Sheikholeslami, M.; Ganji, D. D., Heated permeable stretching surface in a porous medium using Nanofluids, J. Appl. Fluid Mech., 7, 3, 535-542 (2014)
[18] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.; Soleimani, Soheil, Natural convection heat transfer in a nanofluid filled inclined L-shaped enclosure, IJST, Trans. Mech. Eng., 38, 217-226 (2014)
[19] Sheikholeslami, M.; Ganji, D. D., Magnetohydrodynamic flow in a permeable channel filled with nanofluid, Sci. Iran. B, 203-212 (2014)
[20] Hatami, M.; Sheikholeslami, M.; Ganji, D. D., Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall, J. Mol. Liq., 195, 230-239 (2014)
[21] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.; Rana, P., Soheil Soleimani, Magnetohydrodynamic free convection of \(Al_2 O_3\)-water nanofluid considering thermophoresis and Brownian motion effects, Comput. Fluids, 94, 147-160 (2014) · Zbl 1391.76857
[22] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D., Soheil Soleimani, Thermal management for free convection of nanofluid using two phase model, J. Mol. Liq., 194, 179-187 (2014)
[23] Sheikholeslami, M.; Ganji, D. D., Numerical investigation for two phase modeling of nanofluid in a rotating system with permeable sheet, J. Mol. Liq., 194, 13-19 (2014)
[24] Sheikholeslami, M.; Hatami, M.; Ganji, D. D., Micropolar fluid flow and heat transfer in a permeable channel using analytical method, J. Mol. Liq., 194, 30-36 (2014)
[25] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D., Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid, Powder Technol., 254, 82-93 (2014)
[26] Sheikholeslami, M.; Ganji, D. D., Three dimensional heat and mass transfer in a rotating system using nanofluid, Powder Technol., 253, 789-796 (2014)
[27] Nadeem, S.; Ul Haq, Rizwan, Effect of thermal radiation for magnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions, J. Comput. Theor. Nanosci., 11, 32-40 (2014)
[28] Nadeem, S.; Haq, R. U.; Akbar, N. S., MHD three-dimensional boundary layer flow of casson nanofluid past a linearly stretching sheet with convective boundary condition, IEEE Trans. Nanotechnol., 13, 109-115 (2014)
[29] Akbar, N. S.; Nadeem, S.; Haq, R. U.; Rizwan, Ul; Khan, Z. H., Nanoparticles fraction on the peristaltic flow of third order fluid, J. Comput. Theor. Nanosci., 11, 47-52 (2014)
[30] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D., Soheil Soleimani, Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field, J. Mol. Liq., 193, 174-184 (2014)
[31] Sheikholeslami, M.; Hatami, M.; Ganji, D. D., Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field, J. Mol. Liq., 190, 112-120 (2014)
[32] Sheikholeslami, M.; Ganji, D. D.; Gorji-Bandpy, M., Soheil Soleimani, Magnetic field effect on nanofluid flow and heat transfer using KKL model, J. Taiwan Inst. Chem. Eng., 45, 795-807 (2014)
[33] Sheikholeslami, M.; Gorji-Bandpy, M., Soheil Soleimani, Two phase simulation of nanofluid flow and heat transfer using heatline analysis, Int. Commun. Heat Mass Transf., 47, 73-81 (2013)
[34] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D., Numerical investigation of MHD effects on \(Al_2 O_3\)-water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM, Energy, 60, 501-510 (2013)
[35] Sheikholeslami, M.; Gorji Bandpy, M.; Ellahi, R.; Hassan, Mohsan; Soleimani, Soheil, Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM, J. Magn. Magn. Mater., 349, 188-200 (2014)
[36] Sheikholeslami, M.; Bani Sheykholeslami, F.; Khoshhal, S.; Mola-Abasi, H.; Ganji, D. D.; Rokni, Houman B., Effect of magnetic field on Cu-water nanofluid heat transfer using GMDH-type neural network, Neural Comput. Appl., 25, 171-178 (2014)
[37] Rashidi, M. M.; Abelman, S.; Freidooni Mehr, N., Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transf., 62, 515-525 (2013)
[38] Rashidi, M. M.; Kavyani, N.; Abelman, S., Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties, Int. J. Heat Mass Transf., 70, 892-917 (2014)
[39] Sheikholeslami, M.; Gorji-Bandpy, M.; Pop, I.; Soleimani, Soheil, Numerical study of natural convection between a circular enclosure and a sinusoidal cylinder using control volume based finite element method, Int. J. Therm. Sci., 72, 147-158 (2013)
[40] Sheikholeslami, M.; Gorji-Bandpy, M.; Seyyedi, S. M.; Ganji, D. D.; Rokni, Houman B.; Soleimani, Soheil, Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries, Powder Technol., 247, 87-94 (2013)
[41] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D., Natural convection in a nanofluid filled concentric annulus between an outer square cylinder and an inner elliptic cylinder, Sci. Iran., Trans. B: Mech. Eng., 20, 4, 1241-1253 (2013)
[42] Sheikholeslami, M.; Hatami, M.; Ganji, D. D., Analytical investigation of MHD nanofluid flow in a semi-porous channel, Powder Technol., 246, 327-336 (2013)
[43] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.; Soleimani, Soheil, Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO-water nanofluid in presence of magnetic field, J. Taiwan Inst. Chem. Eng., 45, 40-49 (2014)
[44] Ellahi, R.; Rahman, S. U.; Nadeem, S., Blood flow of Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles, Phys. Lett. A, 378, 2973-2980 (2014) · Zbl 1298.76016
[45] Fu, H. L.; Gao, L., Theory for anisotropic thermal conductivity of magnetic nanofluids, Phys. Lett. A, 375, 3588-3592 (2011)
[46] Hayat, T.; Sajid, M., On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder, Phys. Lett. A, 361, 316-322 (2007) · Zbl 1170.76307
[47] Hayat, T.; Javed, T., On analytic solution for generalized three-dimensional MHD flow over a porous stretching sheet, Phys. Lett. A, 370, 243-250 (2007) · Zbl 1209.76024
[48] Sheikholeslami, M.; Gorji-Bandpy, M.; Domairry, G., Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM), Appl. Math. Mech.-Engl. Ed., 34, 7, 1-15 (2013)
[49] Sheikholeslami, M.; Hashim, I.; Soleimani, Soheil, Numerical investigation of the effect of magnetic field on natural convection in a curved-shape enclosure, Hindawi Publ. Corporation Math. Probl. Eng., 2013, 831725 (2013), 11 pages · Zbl 1299.76162
[50] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.; Soleimani, Soheil, Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu-water nanofluid using CVFEM, Adv. Powder Technol., 24, 980-991 (2013)
[51] Sheikholeslami, M.; Ganji, D. D.; Ashorynejad, H. R., Investigation of squeezing unsteady nanofluid flow using ADM, Powder Technol., 239, 259-265 (2013)
[52] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.; Soleimani, Soheil, MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM, Neural Comput. Appl., 24, 873-882 (2014)
[53] Sheikholeslami, M.; Ganji, D. D., Heat transfer of Cu-water nanofluid flow between parallel plates, Powder Technol., 235, 873-879 (2013)
[54] Ashorynejad, H. R.; Sheikholeslami, M.; Pop, I.; Ganji, D. D., Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field, Heat Mass Transf., 49, 427-436 (2013)
[55] Reza Ashorynejad, Hamid; Mohamad, Abdulmajeed A.; Sheikholeslami, Mohsen, Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method, Int. J. Therm. Sci., 64, 240-250 (2013)
[56] Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.; Soleimani, Soheil; Seyyedi, S. M., Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field, Int. Commun. Heat Mass Transf., 39, 1435-1443 (2012)
[57] Soleimani, Soheil; Sheikholeslami, M.; Ganji, D. D.; Gorji-Bandpay, M., Natural convection heat transfer in a nanofluid filled semi-annulus enclosure, Int. Commun. Heat Mass Transf., 39, 565-574 (2012)
[58] Sheikholeslami, M.; Gorji-Bandpay, M.; Ganji, D. D., Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid, Int. Commun. Heat Mass Transf., 39, 978-986 (2012)
[59] Domairry, Davood; Sheikholeslami, Mohsen; Reza Ashorynejad, Hamid; Subba Reddy Gorla, Rama; Khani, Mostafa, Natural convection flow of a non-Newtonian nanofluid between two vertical flat plates, Proc. IMechE Part N. Proc. IMechE Part N, J. Nanoeng. Nanosyst., 225, 3, 115-122 (2012), ©IMechE
[60] Sheikholeslami, M.; Ganji, D. D.; Ashorynejad, H. R.; Rokni, Houman B., Analytical investigation of Jeffery-Hamel flow with high magnetic field and nano particle by Adomian decomposition method, Appl. Math. Mech.-Engl. Ed., 33, 1, 1553-1564 (2012) · Zbl 1266.76063
[61] Sheikholeslami, Mohsen; Gorji-Bandpy, Mofid; Vajravelu, Kuppalapalle, Lattice Boltzmann simulation of magnetohydrodynamic natural convection heat transfer of \(Al_2 O_3\)-water nanofluid in a horizontal cylindrical enclosure with an inner triangular cylinder, Int. J. Heat Mass Transf., 80, 16-25 (2015)
[62] Mustafa, M.; Hayat, T.; Pop, I.; Asghare, S.; Obaidat, S., Stagnation-point flow of a nanofluid towards a stretching sheet, Int. J. Heat Mass Transf., 54, 5588-5594 (2011) · Zbl 1231.80023
[63] Hayat, T.; Abbasi, F. M.; Al-Yami, Maryem; Monaquel, Shatha, Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects, J. Mol. Liq., 194, 93-99 (2014)
[64] Hayat, T.; Abbas, Z.; Pop, I.; Asghar, S., Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium, Int. J. Heat Mass Transf., 53, 466-474 (2010) · Zbl 1180.80022
[65] Sheikholeslami, M., Effect of uniform suction on nanofluid flow and heat transfer over a cylinder, J. Braz. Soc. Mech. Sci. Eng (2014)
[66] Sheikholeslami, M.; Ashorynejad, H. R.; Domairry, G.; Hashim, I., Flow and heat transfer of Cu-water nanofluid between a stretching sheet and a porous surface in a rotating system, Hindawi Publ. Corporation J. Appl. Math., 2012, 421320 (2012), 19 pages · Zbl 1244.76085
[67] Sheikholeslami, M.; Ashorynejad, H. R.; Ganji, D. D.; Kolahdooz, A., Investigation of rotating MHD viscous flow and heat transfer between stretching and porous surfaces using analytical method, Hindawi Publ. Corporation Math. Probl. Eng., 2011, 258734 (2011), 17 pages · Zbl 1235.76118
[68] Sheikholeslami, M.; Ashorynejad, H. R.; Ganji, D. D.; Yıldırım, A., Homotopy perturbation method for three-dimensional problem of condensation film on inclined rotating disk, Sci. Iran. B, 19, 3, 437-442 (2012)
[69] Nadeem, S.; Mehmood, Rashid; Akbar, Noreen Sher, Nanoparticle analysis for non-orthogonal stagnation point flow of a third order fluid towards a stretching surface, J. Comput. Theor. Nanosci., 10, 2737-2747 (2013)
[70] Nadeem, S.; Mehmood, Rashid; Akbar, Noreen Sher, Optimized analytical solution for oblique flow of a Casson nano fluid with convective boundary conditions, Int. J. Therm. Sci., 78, 90-100 (2014)
[71] Sheikholeslami, Mohsen; Reza Ashorynejad, Hamid; Domairry, Davood; Hashim, Ishak, Investigation of the laminar viscous flow in a semi-porous channel in the presence of uniform magnetic field using optimal homotopy asymptotic method, Sains Malays., 41, 10, 1177-1229 (2012)
[72] Sheikholeslami, M.; Ashorynejad, H. R.; Barari, A.; Soleimani, Soheil, Investigation of heat and mass transfer of rotating MHD viscous flow between a stretching sheet and a porous surface, Eng. Comput., 30, 3, 357-378 (2013)
[73] Sheikholeslami, M.; Ganji, D. D.; Rokni, Houman B., Nanofluid flow in a semi-porous channel in the presence of uniform magnetic field, IJE Trans. C: Aspects, 26, 6, 653-662 (June 2013)
[74] Kang, Hongbo; Zhang, Yuwen; Yang, Mo; Li, Ling, Non-equilibrium molecular dynamics simulation of coupling between nanoparticles and base-fluid in a nanofluid, Phys. Lett. A, 376, 521-524 (2012)
[75] Xie, Huaqing; Li Wei Y, Yang, Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows, Phys. Lett. A, 374, 2566-2568 (2010)
[76] Shen, L. P.; Wang, H.; Dong, M.; Ma, Z. C.; Wang, H. B., Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid, Phys. Lett. A, 376, 1053-1057 (2012) · Zbl 1255.82078
[77] Koo, J.; Kleinstreuer, C., Liquid flow in microchannels: experimental observations and computational analysis of microfluidics effect, J. Micromech. Microeng., 13, 568-579 (2003)
[78] Koo, J.; Kleinstreuer, C., Laminar nanofluid flow in microheat-sinks, Int. J. Heat Mass Transf., 48, 2652-2661 (2005) · Zbl 1189.76122
[79] Berman, A. S., Laminar flow in channels with porous walls, J. Appl. Phys., 24, 1232-1235 (1953) · Zbl 0050.41101
[80] Debruge, L. L.; Han, L. S., Heat transfer in a channel with a porous wall for turbine cooling application, J. Heat Transfer Trans. ASME, 94, 385-390 (1972)
[81] Goto, M.; Uchida, S., Unsteady flows in a semi-infinite expanding pipe with injection through wall, Trans. Jpn. Soc. Aeronaut. Space Sci., 33, 14-27 (1990)
[82] Dinarvand, S.; Rashidi, M. M., A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls, Nonlinear Anal., Real World Appl., 11, 1502-1512 (2010) · Zbl 1189.35249
[83] Koo, J.; Kleinstreuer, C., Viscous dissipation effects in micro tubes and micro channels, Int. J. Heat Mass Transf., 47, 3159-3169 (2004)
[84] Koo, J., Computational nanofluid flow and heat transfer analyses applied to microsystems (2004), NC State University: NC State University Raleigh, NC, PhD Thesis
[85] Prasher, R. S.; Bhattacharya, P.; Phelan, P. E., Thermal conductivity of nano scale colloidal solution, Phys. Rev. Lett., 94, 025901 (2005)
[86] Jang, S. P.; Choi, S. U.S., The role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316-4318 (2004)
[87] Li, J., Computational analysis of nanofluid flow in micro channels with applications to micro-heat sinks and bio-MEMS (2008), NC State University: NC State University Raleigh, NC, United States, PhD Thesis
[88] Uchida, S.; Aoki, H., Unsteady flows in a semi-infinite contracting or expanding pipe, J. Fluid Mech., 82, 371-387 (1977) · Zbl 0367.76100
[89] Dauenhauer, C. E.; Majdalani, J., Exact self-similarity solution of the Navier-Stokes equations for a porous channel with orthogonally moving walls, Phys. Fluids, 151, 485-495 (2003) · Zbl 1186.76126
[90] Majdalani, J.; Zhou, C.; Dawson, C. A., Two-dimensional viscous flows between slowly expanding or contracting walls with weak permeability, J. Biomech., 35, 1399-1403 (2002)
[91] Majdalani, J.; Zhou, C., Moderate-to-large injection and suction driven channel flows with expanding and contracting walls, ZAMM. Z. Angew. Math. Mech., 83, 181-196 (2003) · Zbl 1116.76348
[92] Xinhui, Si; Liancun, Zheng; Xinxin, Zhang; Jianhong, Yang, Homotopy analysis method for the heat transfer in a asymmetric porous channel with an expanding or contracting wall, Appl. Math. Model., 35, 4321-4329 (2011) · Zbl 1225.76224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.