×

Application of Euler matrix method for solving linear and a class of nonlinear Fredholm integro-differential equations. (English) Zbl 1301.65133

Summary: The main aim of this paper is to apply a novel matrix method to compute analytic approximate solutions for the Fredholm integro-differential equations under mixed conditions. Our approach consists of reducing the problem to a set of algebraic equations by expanding the approximate solution in terms of Euler polynomials. The introduced approach is applied to already worked problems in the literature by means of different numerical methods. Comparisons clearly show that our scheme is better and even more superior as compared to the existing ones.

MSC:

65R20 Numerical methods for integral equations
45B05 Fredholm integral equations
45J05 Integro-ordinary differential equations
45A05 Linear integral equations
45G10 Other nonlinear integral equations
Full Text: DOI

References:

[1] Abdou M.A., Badr A.A.: On a method for solving an integral equation in the displacement contact problem. J. Appl. Math. Comput. 127, 65-78 (2002) · Zbl 1126.74472 · doi:10.1016/S0096-3003(01)00003-0
[2] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables. National bureau of standards, Washington, DC (1964) · Zbl 0171.38503
[3] Arfken, G.: Mathematical Methods for Physicists, 3rd ed. Academic Press, San Diego (1985) · Zbl 0135.42304
[4] Asady B., Tavassoli Kajani M., Vencheh A.H., Heydari A.: Solving second kind integral equations with hybrid of Fourier and block-pulse functions. Appl. Math. Comput. 160, 517-522 (2005) · Zbl 1063.65144 · doi:10.1016/j.amc.2003.11.038
[5] Bhrawy A.H., Tohidi E., Soleymani F.: A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals. Appl. Math. Comput. 219, 482-497 (2012) · Zbl 1302.65274 · doi:10.1016/j.amc.2012.06.020
[6] Caraus I., Al Faquid F.M.: Convergence of the collocation method and the mechanical quadrature method for systems of singular integro-differential equations in Lebesgue spaces. J. Comput. Appl. Math. 236, 3796-3804 (2012) · Zbl 1247.65160 · doi:10.1016/j.cam.2012.01.026
[7] Cheon G.-S.: A note on the Bernoulli and Euler polynomials. Appl. Math. Lett. 16, 365-368 (2003) · Zbl 1055.11016 · doi:10.1016/S0893-9659(03)80058-7
[8] Darania P., Ebadian A.: A method for the numerical solution of the integro-differential equations. Appl. Math. Comput. 188, 657-668 (2007) · Zbl 1121.65127 · doi:10.1016/j.amc.2006.10.046
[9] Dehghan M., Salehi R.: The numerical solution of the non-linear integro-differential equations based on the meshless method. J. Comput. Appl. Math. 236, 2367-2377 (2012) · Zbl 1243.65154 · doi:10.1016/j.cam.2011.11.022
[10] El-Sayed S.M., Abdel-Aziz M.R.: A comparison of Adomians decomposition method and wavelet-galerkin method for solving integro-differential equations. Appl. Math. Comput. 136, 151-159 (2003) · Zbl 1023.65149 · doi:10.1016/S0096-3003(02)00024-3
[11] Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953) · Zbl 0052.29502
[12] Farnoosh R., Ebrahimi M.: Monte Carlo method for solving Fredholm integral equations. Appl. Math. Comput. 195, 309-315 (2008) · Zbl 1131.65109 · doi:10.1016/j.amc.2007.04.097
[13] Grimmer R., Liu J.H.: Singular perturbations in viscoelasticity. Rocky Mountain J. Math. 24, 61-75 (1994) · Zbl 0805.73029 · doi:10.1216/rmjm/1181072452
[14] Hansen, E.R.: A Table of Series and Products. Prentice hall, Englewood cliffs (1975) · Zbl 0438.00001
[15] Jackiewicz Z., Rahman M., Welfert B.D.: Numerical solution of a Fredholm integro-differential equation modelling neural networks. Appl. Numer. Math. 56, 423-432 (2006) · Zbl 1089.65136 · doi:10.1016/j.apnum.2005.04.020
[16] Jangveladze T., Kiguradze Z., Neta B.: Finite difference approximation of a nonlinear integro-differential system. Appl. Math. Comput. 215, 615-628 (2009) · Zbl 1179.65162 · doi:10.1016/j.amc.2009.05.061
[17] Jerri, A.J.: Introduction to Integral Equations with Applications. Wiely, New York (1985) · Zbl 0623.45001
[18] Kajani M.T., Ghasemi M., Babolian E.: Comparision between the homotopy perturbation method and the sine-cosine wavelet method for solving linear integro- differential equations. Appl. Math. Comput. 54, 1162-1168 (2007) · Zbl 1141.65397 · doi:10.1016/j.camwa.2006.12.062
[19] Keller J.B., Olmstead W.E.: Temperature of nonlinearly radiating semi-infinite solid. Q. Appl. Math. Comput. 29, 61-75 (1972) · Zbl 0245.35040
[20] Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, Third enlarged edition. Springer, New York (1966) · Zbl 0143.08502
[21] Maleknejad K., Arzhang A.: Numerical solution of the Fredholm singular integro-differential equation with Cauchy kernel by using Taylor-series expansion and Galerkin method. Appl. Math. Comput. 182, 888-897 (2006) · Zbl 1107.65118 · doi:10.1016/j.amc.2006.04.053
[22] Maleknejad K., Basirat B., Hashemizadeh E.: A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-differential equations. Math. Comput. Model. 55, 1363-1372 (2012) · Zbl 1255.65245 · doi:10.1016/j.mcm.2011.10.015
[23] Maleknejad K., Mirzaee F.: Numerical solution of integro-differential equations by using rationalized Haar functions method. Kybernetes 35, 1735-1744 (2006) · Zbl 1160.45303 · doi:10.1108/03684920610688694
[24] Maleknejad K., Nedaiasl K.: Application of Sinc-collocation method for solving a class of nonlinear Fredholm integral equations. Comput. Math. Appl. 62, 3292-3303 (2011) · Zbl 1232.65184 · doi:10.1016/j.camwa.2011.08.045
[25] Maleknejad K., Shahrezaee M., Khatami H.: Numerical solution of integral equations system of the second kind by Block-Pulse functions. Appl. Math. Comput. 166, 15-24 (2005) · Zbl 1073.65149 · doi:10.1016/j.amc.2004.04.118
[26] Mirzaee F., Bimesl S.: A new approach to numerical solution of second-order linear hyperbolic partial differential equations arising from physics and engineering. Resu. Phys. 3, 241-247 (2013) · doi:10.1016/j.rinp.2013.10.002
[27] Mirzaee, F., Bimesl, S.: A new Euler matrix method for solving systems of linear Volterra integral equations with variable coefficients, J. Egypt. Math. Soci. (2014) (in press) · Zbl 1296.45003
[28] Neta B., Igwe J.O.: Finite differences versus finite elements for solving nonlinear integro-differential equations. J. Math. Anal. Appl. 112, 607-618 (1985) · Zbl 0625.65145 · doi:10.1016/0022-247X(85)90266-5
[29] Olmstead W.E., Handelsman R.A.: Diffusion in semi-infinite region with non-linear surface dissipation. SIAM Rev. 18, 275-291 (1996) · Zbl 0323.45008 · doi:10.1137/1018044
[30] Ordokhani Y.: An application of Walsh functions for Fredholm Hammerstein integro-differential equations. Int. J. Contemp. Math. Sci. 5, 1055-1063 (2010) · Zbl 1207.65164
[31] Rashidinia, J., Zarebnia, M.: The numerical solution of integro-differential equation by means of the Sinc method. Appl. Math. Comput. 188, 1124-1130 (2007) · Zbl 1118.65131
[32] Reihani M.H., Abadi Z.: Rationalized Haar functions method for solving Fredholm and Volterra integral equations. J. Comput. Appl. Math. 200, 12-20 (2007) · Zbl 1107.65122 · doi:10.1016/j.cam.2005.12.026
[33] Roman, S.: The Umbral Calculus. Academic Press, New York (1984) · Zbl 0536.33001
[34] Shahmorad S.: Numerical solution of the general form linear Fredholm Volterra integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 167, 1418-1429 (2005) · Zbl 1082.65602 · doi:10.1016/j.amc.2004.08.045
[35] Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordreeht (2001) · Zbl 1014.33001
[36] Yalcinbas S., Sezar M.: The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials. Appl. Math. Comput. 112, 291-308 (2000) · Zbl 1023.65147 · doi:10.1016/S0096-3003(99)00059-4
[37] Young P.T.: Congruences for Bernoulli, Euler and Stirling numbers. J. Number Theory 78, 204-227 (1999) · Zbl 0939.11014 · doi:10.1006/jnth.1999.2401
[38] Yuzbasi S., Shahin N., Sezer M.: Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases. Comput. Math. Appl. 61, 3079-3096 (2011) · Zbl 1222.65154 · doi:10.1016/j.camwa.2011.03.097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.