×

Numerical integration of Hamiltonian problems by G-symplectic methods. (English) Zbl 1301.65127

The authors introduce and analyze a general linear method in order to solve Hamiltonian problems. Their method is one of order 4, symmetric and G-symplectic, with bounded parasitic components. It requires a lower computational effort than the symplectic Runge-Kutta methods at the same accuracy level. Some numerical experiments are carried out in order to confirm the qualities of the method.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
Full Text: DOI

References:

[1] Arnold, V.I.: Mathematical Methods of Classical Mechanics. 2nd edn. Springer-Verlag, New York (1989) · Zbl 0692.70003 · doi:10.1007/978-1-4757-2063-1
[2] Burrage, K., Butcher, J.C.: Stability criteria for implicit Runge-Kutta methods. SIAM. J. Numer. Anal 16(33), 46-57 (1979) · Zbl 0396.65043 · doi:10.1137/0716004
[3] Burrage, K., Butcher, J.C.: Nonlinear stability of a general class of differential equation methods. BIT 20, 185-203 (1980) · Zbl 0431.65051 · doi:10.1007/BF01933191
[4] Burrage, K., Hundsdorfer, W.H.: The order of B-convergence of algebraically stable Runge-Kutta methods. BIT 27, 62-71 (1987) · Zbl 0629.65075 · doi:10.1007/BF01937355
[5] Butcher, J.C.: The equivalence of algebraic stability and AN-stability. BIT 27, 510-533 (1987) · Zbl 0637.65083 · doi:10.1007/BF01937275
[6] Butcher, J.C.: General linear methods. Acta Numer. 15, 157-256 (2006) · Zbl 1113.65072 · doi:10.1017/S0962492906220014
[7] Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. 2nd edn. Wiley, Chichester (2008) · Zbl 1167.65041 · doi:10.1002/9780470753767
[8] Butcher, J.C.: Dealing with parasitic behaviour in G-Symplectic integrators. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design 120, Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, pp. 105-123 (2013) · Zbl 1263.65068
[9] Butcher, J.C., D’Ambrosio, R.: Partitioned general linear methods for separable Hamiltonian problems, (submitted). · Zbl 1365.65272
[10] Butcher, J.C., Hewitt, L.L.: The existence of symplectic general linear methods. Numer. Algor. 51, 77-84 (2009) · Zbl 1176.65080 · doi:10.1007/s11075-008-9250-3
[11] Cooper, G.J.: Stability of Runge-Kutta methods for trajectory problems. IMA. J. Numer. Anal. 7, 1-13 (1987) · Zbl 0624.65057 · doi:10.1093/imanum/7.1.1
[12] Chartier, P., Faou, E., Murua, A.: An algebraic approach to invariant preserving integrators: the case of quadratic and Hamiltonian invariants. Numer. Math. 103, 575-590 (2006) · Zbl 1100.65115 · doi:10.1007/s00211-006-0003-8
[13] Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. of Math. 152(3), 881-901 (2000) · Zbl 0987.70009 · doi:10.2307/2661357
[14] Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B.: A practical approach for the derivation of algebraically stable two-step Runge-Kutta methods. Math. Model. Anal. 17(1), 65-77 (2012) · Zbl 1246.65109 · doi:10.3846/13926292.2012.644870
[15] Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B.: Numerical search for algebraically stable two-step continuous Runge-Kutta methods. J. Comput. Appl. Math. 239, 304-321 (2013) · Zbl 1255.65130 · doi:10.1016/j.cam.2012.08.012
[16] D’Ambrosio, R.: On the G-symplecticity of two-step Runge-Kutta methods. Commun. Appl. Ind. Math. 3(1), e-403 (2012). doi:10.1685/journal.caim.403 · Zbl 1329.65149 · doi:10.1685/journal.caim.403
[17] D’Ambrosio, R., De Martino, G., Paternoster, B.: Construction of nearly conservative multivalue numerical methods for Hamiltonian problems. Commun. Appl. Ind. Math. 3(2), e-412 (2012). doi:10.1685/journal.caim.412 · Zbl 1329.65305 · doi:10.1685/journal.caim.412
[18] D’Ambrosio, R., Esposito, E., Paternoster, B.: General Linear Methods for y″=f(y(t))\(y''=f(y(t))\). Numer. Algoritm. 61(2), 331-349 (2012) · Zbl 1275.65039 · doi:10.1007/s11075-012-9637-z
[19] D’Ambrosio, R., Ferro, M., Jackiewicz, Z., Paternoster, B.: Two-step almost collocation methods for ordinary differential equations. Numer. Algoritm. 53(2-3), 195-217 (2010) · Zbl 1186.65107 · doi:10.1007/s11075-009-9280-5
[20] D’Ambrosio, R., Izzo, G., Jackiewicz, Z.: Search for highly stable two-step Runge-Kutta methods for ODEs. Appl. Numer. Math. 62(10), 1361-1379 (2012) · Zbl 1252.65119 · doi:10.1016/j.apnum.2012.06.012
[21] D’Ambrosio, R., Jackiewicz, Z.: Continuous two-step Runge-Kutta methods for ordinary differential equations. Numer. Algoritm. 54(2), 169-193 (2010) · Zbl 1191.65092 · doi:10.1007/s11075-009-9329-5
[22] D’Ambrosio, R., Jackiewicz, Z.: Construction and implementation of highly stable two-step continuous methods for stiff differential systems. Math. Comput. Simul. 81(9), 1707-1728 (2011) · Zbl 1220.65096 · doi:10.1016/j.matcom.2011.01.005
[23] D’Ambrosio, R., Paternoster, B.: Two-step modified collocation methods with structured coefficient matrices for ordinary differential equations. Appl. Numer. Math. 62(10), 1325-1334 (2012) · Zbl 1251.65115 · doi:10.1016/j.apnum.2012.06.008
[24] Faou, E., Hairer, E., Pham, T.: Energy conservation with non-symplectic methods: examples and counter-examples. BIT 44(4), 699-709 (2004) · Zbl 1082.65132 · doi:10.1007/s10543-004-5240-6
[25] Habib, Y.: Long-term Behaviour of G-symplectic Methods. PhD thesis, The University of Auckland (2010) · Zbl 1100.65115
[26] Hairer, E.: Backward analysis of numerical integrators and symplectic methods. Scientific computation and differential equations. Ann. Numer. Math. 1(1-4), 107-132 (1994) · Zbl 0828.65097
[27] Hairer, E.: Backward error analysis for multistep methods. Numer. Math. 84, 199-232 (1999) · Zbl 0941.65077 · doi:10.1007/s002110050469
[28] Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. 2nd edn. Springer Series in Computational Mathematics, vol. 31. Springer-Verlag, Berlin (2006) · Zbl 1094.65125
[29] Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations, 2nd edn. Springer Series in Computational Mathematics, vol. 8. Springer-Verlag, Berlin (2008) · Zbl 1185.65115
[30] Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. John Wiley & Sons. Hoboken, New Jersey (2009) · Zbl 1211.65095 · doi:10.1002/9780470522165
[31] Lasagni, F.M.: Canonical Runge-Kutta methods. Z. Angew. Math. Phys. 39, 952-953 (1988) · Zbl 0675.34010 · doi:10.1007/BF00945133
[32] McLachlan, R.I., Quispel, G.R.W.: Geometric integrators for ODEs. J. Phys. A: Math. Gen. 39(19), 5251-5285 (2006) · Zbl 1092.65055 · doi:10.1088/0305-4470/39/19/S01
[33] Okunbor, D., Skeel, R.D.: Explicit canonical methods for Hamiltonian systems. Math. Comput. 59(200), 439-455 (1992) · Zbl 0765.65079 · doi:10.1090/S0025-5718-1992-1136225-3
[34] Reich, S.: On higher-order semi-implicit symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems. Numer. Math. 76(2), 231-247 (1997) · Zbl 0882.65065 · doi:10.1007/s002110050261
[35] Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall. England, London (1994) · Zbl 0816.65042 · doi:10.1007/978-1-4899-3093-4
[36] Suris, Y.B.: Preservation of symplectic structure in the numerical solution of Hamiltonian systems (in Russian). Akad. Nauk SSSR, Inst. Prikl. Mat., Moscow, 148-160 232, 238-239 (1988)
[37] Tang, Y.F.: The simplecticity of multistep methods. Comput. Math. Appl. 25(3), 83-90 (1993) · Zbl 0774.65053 · doi:10.1016/0898-1221(93)90146-M
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.