×

Adaptive ODE solvers in extended Kalman filtering algorithms. (English) Zbl 1301.65062

Summary: This paper studies numerical methods that are used to treat ordinary differential equations arising in extended Kalman filtering algorithms. Such problems are called the moment equations and constitute an important subclass of differential equations. They all possess a number of specific properties that make the standard available software ineffective for some mathematical models in this area. For instance, we show that built-in Matlab ODE solvers are not able to cope with a number of tests considered here. In contrast, the hybrid method developed by T. Mazzoni [Comput. Stat. 23, No. 4, 514–539 (2008; Zbl 1224.62083)] exhibits much better performance on the same examples. The latter means that specially designed numerical schemes are needed for efficient solution of the moment equations instead of the standard software designed for general systems of ordinary differential equations.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
93E11 Filtering in stochastic control theory

Citations:

Zbl 1224.62083
Full Text: DOI

References:

[1] Kalman, R. E., A new approach to linear filtering and prediction problem, ASME J. Basic Eng., 82, 1, 35-45 (1960)
[2] Kailath, T.; Sayed, A. H.; Hassibi, B., Linear Estimation (2000), Prentice Hall: Prentice Hall New Jersey
[3] Lewis, F. L., Optimal Estimation: With An Introduction to Stochastic Control Theory (1986), John Wiley & Sons: John Wiley & Sons New York · Zbl 0665.93065
[4] Grewal, M. S.; Andrews, A. P., Kalman Filtering: Theory and Practice (2001), Prentice Hall: Prentice Hall New Jersey
[5] Goodwin, G. C.; Sin, K. S., Adaptive Filtering Prediction and Control (1984), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0653.93001
[6] Simon, D., Optimal State Estimation: Kalman, H Infinity and Nonlinear Approaches (2006), Wiley: Wiley Hoboken, New Jersey
[7] Frogerais, P.; Bellanger, J.-J.; Senhadji, L., Various ways to compute the continuous-discrete extended Kalman filter, IEEE Trans. Automat. Control, 57, 4, 1000-1004 (2012) · Zbl 1369.93624
[8] Singer, H., Continuous-discrete unscented kalman filtering, FernUniversitat, Tech. Rep. 384, Hagen, Germany (2006)
[9] Julier, S.; Uhlmann, J.; Durrant-Whyte, H., A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Trans. Automat. Control, 45, 3, 477-482 (2000) · Zbl 0973.93053
[10] Julier, S.; Uhlmann, J., Unscented filtering and nonlinear estimation, Proc. IEEE, 92, 401-422 (2004)
[11] Ito, K.; Xiong, K., Gaussian filters for nonlinear filtering problems, IEEE Trans. Automat. Control, 45, 5, 910-927 (2000) · Zbl 0976.93079
[12] Nørgaard, M.; Poulsen, N. K.; Ravn, O., New developments in state estimation for nonlinear systems, Automatica, 36, 1627-1638 (2000) · Zbl 0973.93050
[13] Arasaratnam, I.; Haykin, S., Square-root quadrature Kalman filtering, IEEE Trans. Signal Process., 56, 6, 2589-2593 (2008) · Zbl 1390.94079
[14] Arasaratnam, I.; Haykin, S., Cubature Kalman filters, IEEE Trans. Automat. Control, 54, 6, 1254-1269 (2009) · Zbl 1367.93637
[15] Arasaratnam, I.; Haykin, S.; Hurd, T. R., Cubature Kalman filtering for continuous-discrete systems: theory and simulations, IEEE Trans. Signal Process., 58, 10, 4977-4993 (2010) · Zbl 1391.93223
[16] Haseltine, E. L.; Rawlings, J. B., A critical evaluation of extended Kalman filtering and moving-horizon estimation, Tech. Rep., Madison, WI (2002)
[17] Haseltine, E. L.; Rawlings, J. B., Critical evaluation of extended Kalman filtering and moving-horizon estimation, Ind. Eng. Chem. Res., 44, 2451-2460 (2005)
[18] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0789.65048
[19] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (2010), Springer-Verlag: Springer-Verlag Berlin · Zbl 1192.65097
[20] Butcher, J. C., Numerical Methods for Ordinary Differential Equations (2008), John Wiley and Sons: John Wiley and Sons Chichester · Zbl 1167.65041
[21] Jackiewicz, Z., General Linear Methods for Ordinary Differential Equations (2009), John Wiley and Sons: John Wiley and Sons Hoboken · Zbl 1211.65095
[22] Mazzoni, T., Computational aspects of continuous-discrete extended Kalman filtering, Comput. Statist., 23, 4, 519-539 (2007) · Zbl 1224.62083
[23] Higham, D.; Higham, N., MATLAB Guide (2005), SIAM: SIAM Philadelphia · Zbl 1067.68180
[25] Dormand, J. R.; Prince, P. J., A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6, 19-26 (1980) · Zbl 0448.65045
[26] Kulikov, G. Yu.; Weiner, R., Global error estimation and control in linearly-implicit parallel two-step peer W-methods, J. Comput. Appl. Math., 236, 1226-1239 (2011) · Zbl 1269.65075
[27] Kulikov, G. Yu.; Weiner, R., Variable-stepsize interpolating explicit parallel peer methods with inherent global error control, SIAM J. Sci. Comput., 32, 1695-1723 (2010) · Zbl 1215.65125
[28] González-Pinto, S.; Hernández-Abreu, D.; Montijano, J. I., An efficient family of strongly A-stable Runge-Kutta collocation methods for stiff systems and DAEs, part I: stability and order results, J. Comput. Appl. Math., 234, 1105-1116 (2010) · Zbl 1191.65110
[29] González-Pinto, S.; Hernández-Abreu, D.; Montijano, J. I., An efficient family of strongly A-stable Runge-Kutta collocation methods for stiff systems and DAEs, part II: convergence results, Appl. Numer. Math., 62, 1349-1360 (2012) · Zbl 1260.65064
[30] Kulikov, G. Yu.; Shindin, S. K., Adaptive nested implicit Runge-Kutta formulas of Gauss type, Appl. Numer. Math., 59, 707-722 (2009) · Zbl 1161.65055
[31] Kulikov, G. Yu., Cheap global error estimation in some Runge-Kutta pairs, IMA J. Numer. Anal., 33, 136-163 (2013) · Zbl 1271.65119
[32] Schmitt, B. A.; Weiner, R., Parallel two-step W-methods with peer variables, SIAM J. Numer. Anal., 42, 265-286 (2004) · Zbl 1089.65070
[33] Schmitt, B. A.; Weiner, R.; Podhaisky, H., Multi-implicit peer two-step W-methods for parallel time integration, BIT, 45, 197-217 (2005) · Zbl 1079.65082
[34] Weiner, R.; Schmitt, B. A.; Podhaisky, H.; Jebens, S., Superconvergent explicit two-step peer methods, J. Comput. Appl. Math., 223, 753-764 (2009) · Zbl 1166.65037
[35] Weiner, R.; Kulikov, G. Yu.; Podhaisky, H., Variable-stepsize doubly quasi-consistent parallel explicit peer methods with global error control, Appl. Numer. Math., 62, 1591-1603 (2012) · Zbl 1252.65117
[36] Weiner, R.; Kulikov, G. Yu., Local and global error estimation and control within explicit two-step peer triples, J. Comput. Appl. Math. (2013) · Zbl 1301.65067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.