×

A hierarchical Bayesian multidimensional scaling methodology for accommodating both structural and preference heterogeneity. (English) Zbl 1301.62123

Summary: Multidimensional scaling (MDS) models for the analysis of dominance data have been developed in the psychometric and classification literature to simultaneously capture subjects’ preference heterogeneity and the underlying dimensional structure for a set of designated stimuli in a parsimonious manner. There are two major types of latent utility models for such MDS models that have been traditionally used to represent subjects’ underlying utility functions: the scalar product or vector model and the ideal point or unfolding model. Although both models have been widely applied in various social science applications, implicit in the assumption of such MDS methods is that all subjects are homogeneous with respect to their underlying utility function; i.e., they all follow a vector model or an ideal point model. We extend these traditional approaches by presenting a Bayesian MDS model that combines both the vector model and the ideal point model in a generalized framework for modeling metric dominance data. This new Bayesian MDS methodology explicitly allows for mixtures of the vector and the ideal point models thereby accounting for both preference heterogeneity and structural heterogeneity. We use a marketing application regarding physicians’ prescription behavior of antidepressant drugs to estimate and compare a variety of spatial models.

MSC:

62P15 Applications of statistics to psychology

Software:

PARAFAC; bmds
Full Text: DOI

References:

[1] Belk, R.W. (1974). An Exploratory Assessment of Situational Effects in Buyer Behavior. Journal of Marketing Research, 11, 156–163. · doi:10.2307/3150553
[2] Belk, R.W. (1975). Situational Variables and Consumer Behavior. Journal of Consumer Research, 2(3), 157–164. · doi:10.1086/208627
[3] Belk, R.W. (1979). A Free Response Approach to Developing Product-Specific Taxonomies. In A.D. Shocker (Ed.), Analytical Approaches to Product and Marketing Planning. Cambridge: Marketing Science Institute.
[4] Berndt, E.R., Cockburn, I.M., & Griliches, Z. (1996). Pharmaceutical Innovations and Market Dynamics: Tracking Effects on Price Indexes for Antidepressant Drugs. In Brookings Papers on Economic Activity, Microeconomics (pp. 133–199). Brooking: Brookings Institution Press.
[5] Bettman, J.R., Luce, M.F., & Payne, J.W. (1998). Constructive Consumer Choice Processes. Journal of Consumer Research, 25(3), 187–217. · doi:10.1086/209535
[6] Bradlow, E.T., & Schmittlein, D.C. (2000). The Little Engines That Could: Modeling the Performance of World Wide Web Search Engines. Marketing Science, 19(1), 43–62. · doi:10.1287/mksc.19.1.43.15180
[7] Busing, F.M.T.A., Groenen, P.J.K., & Heiser, W.J. (2005). Avoiding Degeneracy in Multidimensional Unfolding by Penalizing on the Coefficient of Variation. Psychometrika, 70(1), 71–98. · Zbl 1306.62390 · doi:10.1007/s11336-001-0908-1
[8] Carroll, J.D. (1972). Individual Differences and Multidimensional Scaling. In R.N. Shepard, A.K. Romney, & S.B. Nerlove (Eds.), Multidimensional Scaling; Theory and Applications in the Behavioral Sciences. New York: Seminar Press.
[9] Chib, S. (2002). Markov Chain Monte Carlo Methods. In S.J. Press (Ed.), Subjective and Objective Bayesian Statistics (2nd edn., pp. 119–171). New York: Wiley. · Zbl 1099.62539
[10] Consumer Reports. (2005). Best Buy Drugs: Antidepressants.
[11] Coombs, C.H. (1964). A Theory of Data. New York: Wiley.
[12] DeSarbo, W.S., & Carroll, J.D. (1985). Three-Way Metric Unfolding via Alternating Weighted Least Squares. Psychometrika, 50(3), 275–300. · Zbl 0597.62113 · doi:10.1007/BF02294106
[13] DeSarbo, W.S., & Cho, J. (1989). A Stochastic Multidimensional Scaling Vector Threshold Model for the Spatial Representation of Pick ’Any/N’ Data. Psychometrika, 54, 105–129. · doi:10.1007/BF02294452
[14] DeSarbo, W.S., & Rao, V.R. (1984). GENFOLD2: A Set of Models and Algorithms for the GENeral UnFOLDing Analysis of Preference/Dominance Data. Journal of Classification, 2, 147–168. · Zbl 0563.62038 · doi:10.1007/BF01890122
[15] DeSarbo, W.S., & Rao, V.R. (1986). A Constrained Unfolding Methodology for Product Positioning. Marketing Science, 5(1), 1–19. · doi:10.1287/mksc.5.1.1
[16] DeSarbo, W.S., Manrai, A.K., & Manrai, L.A. (1994). Latent Class Multidimensional Scaling: A Review of Recent Developments in the Marketing and Psychometric Literature. In R.P. Bagozzi (Ed.), Advanced Methods of Marketing Research (pp. 190–222). Cambridge: Blackwell.
[17] DeSarbo, W.S., Young, M.R., & Rangaswamy, A. (1997). A Parametric Multidimensional Unfolding Procedure for Incomplete Nonmetric Preference/Choice Set Data in Marketing Research. Journal of Marketing Research, 34, 499–516. · doi:10.2307/3151967
[18] DeSarbo, W.S., Kim, Y., Wedel, M., & Fong, D.K.H. (1998). A Bayesian Approach to the Spatial Representation of Market Structure from Consumer Choice Data. European Journal of Operational Research, 111, 285–305. · Zbl 0957.91072 · doi:10.1016/S0377-2217(98)00150-7
[19] DeSarbo, W.S., Kim, Y., & Fong, D. (1999). A Bayesian Multidimensional Scaling Procedure for the Spatial Analysis of Revealed Choice Data. Journal of Econometrics, 89, 79–108. · Zbl 0958.62112 · doi:10.1016/S0304-4076(98)00056-6
[20] DeSarbo, W.S., Fong, D.K.H., Liechty, J.C., & Coupland, J.C. (2005). Evolutionary Preferences/Utility Functions: A Dynamic Perspective. Psychometrika, 70(1), 179–202. · Zbl 1306.62402 · doi:10.1007/s11336-002-0976-x
[21] Deun, K.V., Groenen, P.J.F., Heiser, W.J., Busing, F.M.T.A., & Delbeke, L. (2005). Interpreting Degenerate Solutions in Unfolding by Use of the Vector Model and the Compensatory Distance Model. Psychometrika, 70(1), 45–69. · Zbl 1306.62512 · doi:10.1007/s11336-002-1046-0
[22] Diebolt, J., & Robert, C.P. (1994). Estimation of Finite Mixture Distributions through Bayesian Sampling. Journal of the Royal Statistical Society. Series B (Methodological), 56(2), 363–375. · Zbl 0796.62028
[23] Gelfand, A.E., & Smith, A.F.M. (1990). Sampling-based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association, 85, 398–409. · Zbl 0702.62020 · doi:10.1080/01621459.1990.10476213
[24] Gelman, A., Gilks, W.R., & Roberts, G.O. (Eds.) (1996). Efficient Metropolis Jumping Rules (Vol. 5). Oxford: Oxford University Press.
[25] Gilbride, T.J., & Allenby, G.M. (2004). A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules. Marketing Science, 23(3), 391–406. · doi:10.1287/mksc.1030.0032
[26] Gilks, W.R., Richardson, S., & Spiegelhalter, D.J. (1996). Introducing Markov Chain Monte Carlo. In W.R. Gilks, S. Richardson, & D.J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice (pp. 1–19). London: Chapman & Hall. · Zbl 0845.60072
[27] Green, P.J. (1995). Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination. Biometrika, 82(4), 711–732. · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[28] Harshman, R.A., & Lundy, M.E. (1984). Data preprocessing and the extended PARAFAC model. In H.G. Law & C.W. Snyder Jr. (Eds.), Research Methods for Multimode Data Analysis (pp. 216–284). New York: Praeger.
[29] Harshman, R.A., & Lundy, M.E. (1985). The Preprocessing Controversy: An Exchange of Papers between Kroonenberg, Harshman and Lundy. University of Western Ontario, Department of Psychology.
[30] Hastings, W.K. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 57(1), 97–109. · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[31] Jedidi, K., & Kohli, R. (2005). Probabilistic Subset-Conjunctive Models for Heterogeneous Consumers. Journal of Marketing Research, 42, 483–494. · doi:10.1509/jmkr.2005.42.4.483
[32] Kamakura, W.A., Kim, B.D., & Lee, J. (1996). Modeling Preference and Structural Heterogeneity in Consumer Choice. Marketing Science, 15(2), 152–172. · doi:10.1287/mksc.15.2.152
[33] Karasu, T.B., Gelenberg, A., Merriam, A., & Wang, P. (2006). Practice Guideline for the Treatment of Patients With Major Depressive Disorder: The American Psychiatric Association.
[34] Kass, R.E., & Raftery, A.E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795. · Zbl 0846.62028 · doi:10.1080/01621459.1995.10476572
[35] Liechty, J.C., Fong, D.K.H., & DeSarbo, W.S. (2005). Dynamic Models with Individual Level Heterogeneity: Applied to Evolution During Conjoint Studies. Marketing Science, 24(2), 285–293. · doi:10.1287/mksc.1040.0088
[36] Lopes, H.F. (2000). Bayesian Analysis in Latent Factor and Longitudinal Models. Durham: Duke Univ. Press.
[37] Menza, M. (2006). STAR*D: The Results Begin to Roll in. American Journal of Psychiatry, 163, 1123. · doi:10.1176/ajp.2006.163.7.1123
[38] Metropolis, M., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953). Equations of State Calculations by Fast Computing Machine. Journal of Chemical Physics, 21, 1087–1091. · doi:10.1063/1.1699114
[39] Newton, M.A., & Raftery, A.E. (1994). Approximate Bayesian Inference with the Weighted Likelihood Bootstrap. Journal of the Royal Statistical Society. Series B (Methodological), 56(1), 3–48. · Zbl 0788.62026
[40] Oh, M.S., & Raftery, A.E. (2001). Bayesian Multidimensional Scaling and Choice of Dimension. Journal of the American Statistical Association, 96(455), 1031–1044. · Zbl 1072.62543 · doi:10.1198/016214501753208690
[41] Petty, R.E., & Cacioppo, J.T. (1986). Communication and Persuasion: Central and Peripheral Routes to Attitude Change. New York: Springer.
[42] Richardson, S., & Green, P.J. (1997). On Bayesian Analysis of Mixtures with an Unknown Number of Components. Journal of the Royal Statistical Society. Series B (Methodological), 59(4), 731–792. · Zbl 0891.62020 · doi:10.1111/1467-9868.00095
[43] Rust, R., Simester, D., Brodie, R., & Nilakant, V. (1995). Model Selection Criteria: An Investigation of Relative Accuracy, Posterior Probabilities, and Combination of Criteria. Management Science, 41(2), 322–333. · Zbl 0833.90080 · doi:10.1287/mnsc.41.2.322
[44] Slater, P. (1960). The Analysis of Personal Preference. British Journal of Statistical Psychology, 13, 119–135. · doi:10.1111/j.2044-8317.1960.tb00050.x
[45] Simon, H.A. (1955). A Behavioral Model of Rational Choice. Quarterly Journal of Economics, 69(February), 99–118. · doi:10.2307/1884852
[46] Simon, H.A. (1990). Invariance of Human Behavior. Annual Review of Psychology, 41, 1–19. · doi:10.1146/annurev.ps.41.020190.000245
[47] Srivastava, R.K., Alpert, M.I., & Shocker, A.D. (1984). A Customer-Oriented Approach for Determining Market Structures. Journal of Marketing, 48(2), 32–45. · doi:10.2307/1251212
[48] Tanner, M.A., & Wong, W.H. (1987). The Calculation of Posterior Distributions by Data Augmentation. Journal of the American Statistical Association, 82(398), 528–540. · Zbl 0619.62029 · doi:10.1080/01621459.1987.10478458
[49] Tucker, L.R. (1960). Intra-Individual and Inter-Individual Multidimensionality. In H. Gulliksen & S. Messick (Eds.), Psychological Scaling: Theory and Applications (pp. 155–167). New York: Wiley.
[50] Tversky, A., & Kahneman, D. (1991). Loss Aversion in Riskless Choice: A Reference-Dependent Model. Quarterly Journal of Economics, 106(November), 1039–1062. · doi:10.2307/2937956
[51] Wedel, M., & DeSarbo, W.S. (1996). An Exponential-Family Multidimensional Scaling Mixture Methodology. Journal of Business & Economic Statistics, 14(4), 447–459.
[52] Wedel, M., & Kamakura, W. (2000). Market Segmentation: Conceptual and Methodological Foundations. Dordrecht: Kluwer Academic.
[53] Young, F.W. (1987). Multidimensional Scaling: History, Theory, and Applications. Lawrence: Lawrence Erlbaum Associates, Inc.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.