×

A strategy to locate fixed points and global perturbations of ODE’s: mixing topology with metric conditions. (English) Zbl 1301.37026

The theory of translation arcs, initiated by Brouwer, is a powerful tool to prove the existence of fixed and periodic points of planar maps. Most of the results obtained in this way are purely qualitative and do not provide any information on the location of the fixed points.
In the present paper, the authors consider homeomorphisms \(h\) of the plane satisfiying additional geometric conditions and they show that it is possible to obtain some bounds. First they assume that the map \(h\) satisfies the condition \[ \|h(x)-x\|\leq M \] for a fixed \(M>0\) and every point \(x\) in the plane. This condition leads to the estimate \[ \beta (n)\leq (n+1)M+\beta (1) \] where \(\beta (n)\) is a bound of the set of \(n\)-cycles. This inequality was already obtained by Campos and the reviewer, but only when \(n\) is a power of two. In a second result, the authors obtain a fixed point theorem for certain homeomorphisms of the type \(h(x)=x+K(x)\) where \(K\) is Lipschitz-continuous. Related results had been previously obtained by Aarao and Martelli and by Graff and Nowak-Przygodzki but in the previous papers \(K\) was a contraction. Some consequences in the theory of periodic differential equations are presented in the last section of the paper.
All the proofs are based on the use of a clever variant of the Arc Translation Lemma (Theorem 2.2).

MSC:

37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
34C25 Periodic solutions to ordinary differential equations
34D10 Perturbations of ordinary differential equations
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics

References:

[1] Aarao, J., Martelli, M.: Stationary states for discrete dynamical systems in the plane. Topol. Methods Nonlinear Anal. 20, 15-23 (2002) · Zbl 1011.37021
[2] Bonino, M.: A dynamical property for planar homeomorphisms and an application to the problem of canonical position around an isolated fixed point. Topology 40, 1241-1257 (2001) · Zbl 0997.54064 · doi:10.1016/S0040-9383(00)00011-2
[3] Bonnati, C., Kolev, B.: Existence de points fixes enlacés <InlineEquation ID=”IEq440“> <EquationSource Format=”TEX“>\[ \grave{a} \] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> <mover accent=”true“> a‘ une orbite périodique d’un homéomorphisme du plan. Ergodic Theory Dynam. Syst. <Emphasis Type=”Bold”>12, 667-682 (1992) · Zbl 0782.55001
[4] Boscaggin, A., Zanolin, F.: Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight. J. Differ. Equ. 252, 2900-2921 (2012) · Zbl 1243.34055 · doi:10.1016/j.jde.2011.09.011
[5] Brown, M.: A note on Kister’s isotopy. Michigan Math J. 14, 95-96 (1967) · Zbl 0185.51503 · doi:10.1307/mmj/1028999663
[6] Brown, M.: Fixed points for orientation preserving homeomorphisms of the plane which interchange two points. Pac. J. Math. 143, 37-41 (1990) · Zbl 0728.55001 · doi:10.2140/pjm.1990.143.37
[7] Brown, M.: A new proof of Brouwer’s lemma on translation arcs. Houst. J. Math. 10, 35-41 (1984) · Zbl 0551.57005
[8] Brown, M.: Homeomorphisms of two dimensions manifolds. Houst. J. Math. 11, 455-469 (1985) · Zbl 0605.57005
[9] Campos, J., Ortega, R.: Location of fixed points and periodic solutions in the plane. Discret. Contin. Dyn. Syst. Ser. B 9, 517-523 (2008) · Zbl 1360.34090 · doi:10.3934/dcdsb.2008.9.517
[10] Capietto, A., Dambrosio, W., Ma, T., Wang, Z.: Unbounded solutions and periodic solutions of perturbed isochronous hamiltonian systems in resonance. Discret. Contin. Dyn. Syst. 33, 1835-1856 (2013) · Zbl 1267.37064
[11] Chavarriga, J., Sabatini, M.: A survey of isochronous centers. Qual. Theory Dyn. Syst. 1, 1-70 (1999) · doi:10.1007/BF02969404
[12] Dancer, E.N.: On the Dirichlet problem for weakly non-elliptic partial differential equations. Proc. R. Soc. Edinb. A 76, 283-300 (1977) · Zbl 0351.35037
[13] Dancer, E.N.: Boundary-value problems for weakly nonlinear ordinary differential equations. Bull. Aust. Math. Soc. 15, 321-328 (1976) · Zbl 0342.34007 · doi:10.1017/S0004972700022747
[14] Fabry, C., Fonda, A.: Unbounded motions of perturbed isochronous hamiltonian systems in resonance. Adv. Nonlinear Stud. 5, 351-373 (2005) · Zbl 1088.34027
[15] Fonda, A., Mawhin, J.: Planar differential equations at resonance. Adv. Differ. Equ. 11, 1111-1133 (2006) · Zbl 1155.34020
[16] Franks, J.: Recurrence and fixed points of surfaces homeomorphisms. Ergod. Theory Dynam. Syst. 8, 99-107 (1988) · Zbl 0634.58023 · doi:10.1017/S0143385700009366
[17] Franks, J.: A new proof of the Brouwer plane translation theorem. Ergod. Theory Dynam. Syst. 12, 217-226 (1992) · Zbl 0767.58025 · doi:10.1017/S0143385700006702
[18] Fucik, S.: Solvability of Nonlinear Equations and Boundary value problems. Reidel, Dordrecht (1980) · Zbl 0453.47035
[19] Graff, G., Nowak-Przygodzki, P.: Fixed points of planar homeomorphisms of the form identity + contraction. Rocky Mt. J. Math. 37, 299-314 (2007) · Zbl 1133.37012 · doi:10.1216/rmjm/1194275936
[20] Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Springer-Verlag, New York (1983) · Zbl 0515.34001 · doi:10.1007/978-1-4612-1140-2
[21] Handel, M.: A fixed-point theorem for planar homeomorphisms. Topology 38, 235-264 (1999) · Zbl 0928.55001 · doi:10.1016/S0040-9383(98)00001-9
[22] Jezierski, J., Marzantowicz, W.: Homotopy Methods in Topological Fixed and Periodic Point Theory. Topological Fixed Point Theory and Its Applications, vol. 3. Springer, Dordrecht (2006) · Zbl 1085.55001
[23] Lanzer, A., Leach, D.E.: Bounded perturbations of forced harmonics oscillators at resonance. Ann. Mat. Pura Appl. 82, 49-68 (1969) · Zbl 0194.12003 · doi:10.1007/BF02410787
[24] Le Calvez, P.: Pourquoi les points périodiques des homéomorphisme du plan tournent-ils autour de certains points fixes? Ann. Sci. Ec. Norm. Super. 41, 141-176 (2008) · Zbl 1168.37010
[25] Margueri, A., Rebelo, C., Zanolin, F.: Chaos in periodically perturbed planar hamiltonian systems using linked twist maps. J. Differ. Equ. 249, 3233-3257 (2010) · Zbl 1217.34072 · doi:10.1016/j.jde.2010.08.021
[26] Murthy, P.: Periodic solutions of two dimensional forced systems: the Massera theorem and its extension. J. Dynam. Differ. Equ. 10, 275-302 (1998) · Zbl 0914.34042 · doi:10.1023/A:1022618000699
[27] Ortega, R., Ruiz-Herrera, A.: Index and persistence of stable Cantor sets. Rend. Inst. Mat. Univ. Trieste 44, 33-44 (2012) · Zbl 1268.37069
[28] Ortega, R.: Topology of the Plane and Periodic Differential Equations (2013). www.ugr.es/local/ecuadif/fuentenueva.htm · Zbl 0134.07205
[29] Ortega, R., Verzini, G.: A variational method for the existence of bounded solutions of a sublinear forced oscillator. Proc. Lond. Math. Soc. 88, 775-795 (2004) · Zbl 1072.34038 · doi:10.1112/S0024611503014515
[30] Rebelo, C., Zanolin, F.: Multiplicity results for periodic solutions of second order ODE’s with asymmetric nonlinearities. Trans. Amer. Math. Soc. 348, 2349-2389 (1998) · Zbl 0856.34051
[31] Ruiz-Herrera, A.: Topological criteria of global attraction with applications in population dynamics. Nonlinearity 25, 2823-2841 (2012) · Zbl 1279.37015 · doi:10.1088/0951-7715/25/10/2823
[32] Urabe, M.: The potential force yielding a periodic motion whose period is an arbitrary continuous function of the amplitude of the velocity. Arch. Ration. Mech. Anal. 11, 27-33 (1962) · Zbl 0134.07205 · doi:10.1007/BF00253926
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.