×

The polynomial multidimensional Szemerédi theorem along shifted primes. (English) Zbl 1301.37008

The main result in the present paper is the following theorem: If \(l,n\in\mathbb{N}\), \(\overline{q}_1,\ldots,\overline{q}_m:\mathbb{Z}\rightarrow\mathbb{Z}^l\) are polynomials with \(\overline{q}_i(0)=\overline{0}\) for \(i=1,2,\ldots,m\) and \(E\subset \mathbb{Z}^l\) has positive upper Banach density, \(d^{\ast}(E)>0\), then the set of integers \(n\) such that \[ d^{\ast}(E\cap (E-\overline{q}_1(n))\cap\cdots\cap(E-\overline{q}_m(n)))>0 \] has nonempty intersection with \(\mathbb{P}-1\) and \(\mathbb{P}+1\), where \(\mathbb{P}\) denotes the set of primes.
Actually the authors prove the ergodic version of the above theorem, since the two versions are equivalent by Furstenberg’s correspondence principle. They also show mean convergence results for the corresponding multiple ergodic averages over the primes, conditional on the convergence of the corresponding averages over the full set of natural numbers. In some cases these results are new and in some they generalize previous work by Wooley, Ziegler, Bergelson, and Leibman.

MSC:

37A44 Relations between ergodic theory and number theory
11B30 Arithmetic combinatorics; higher degree uniformity
11B05 Density, gaps, topology

References:

[1] T. Austin, Pleasant extensions retaining algebraic structure, I, preprint, available at arxiv:0905.0518.
[2] T. Austin, Pleasant extensions retaining algebraic structure, II, preprint, available at arxiv:0910.0907.
[3] V. Bergelson, B. Host, R. McCutcheon and F. Parreau, Aspects of uniformity in recurrence, Colloquium Mathematicum 84/85 (2000), 549–576. · Zbl 0966.28009
[4] V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemer édi’s theorems, Journal of the American Mathematical Society 9 (1996), 725–753. · Zbl 0870.11015 · doi:10.1090/S0894-0347-96-00194-4
[5] V. Bergelson, A. Leibman and T. Ziegler, The shifted primes and the multidimensional Szemerédi and polynomial van der Waerden Theorems, Comptes Rendus Mathématique, Académie des Sciences, Paris 349 (2011), 123–125. · Zbl 1230.11017 · doi:10.1016/j.crma.2010.11.028
[6] C. Chu, N. Frantzikinakis and B. Host, Ergodic averages of commuting transformations with distinct degree polynomial iterates, Proceedings of the London Mathematical Society, Third Series 102 (2011), 801–842. · Zbl 1218.37009 · doi:10.1112/plms/pdq037
[7] N. Frantzikinakis, B. Host and B. Kra, Multiple recurrence and convergence for sequences related to the prime numbers, Journal für die Reine und Angewandte Mathematik 611 (2007), 131–144. · Zbl 1126.37005
[8] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, Journal d’Analyse Mathématique 71 (1977), 204–256. · Zbl 0347.28016 · doi:10.1007/BF02813304
[9] H. Furstenberg and Y. Katznelson, IPr sets, Szemerédi’s Theorem, and Ramsey Theory, American Mathematical Society, Bulletin 14 (1986), 275–278. · Zbl 0636.05016 · doi:10.1090/S0273-0979-1986-15438-8
[10] W. Gowers, A new proof of Szemerédi’s theorem, Geometric and Functional Analysis 11 (2001), 465–588. · Zbl 1028.11005 · doi:10.1007/s00039-001-0332-9
[11] B. Green and T. Tao, Linear equations in the primes, Annals of Mathematics 171 (2010), 1753–1850. · Zbl 1242.11071 · doi:10.4007/annals.2010.171.1753
[12] B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Annals of Mathematics (2) 175 (2012), 541–566. · Zbl 1347.37019 · doi:10.4007/annals.2012.175.2.3
[13] B. Green, T. Tao and T. Ziegler, An inverse theorem for the Gowers U s+1-norm, Annals of Mathematics, to appear. · Zbl 1282.11007
[14] B. Host and B. Kra, Convergence of polynomial ergodic averages, Israel Journal of Mathematics 149 (2005), 1–19. · Zbl 1085.28009 · doi:10.1007/BF02772534
[15] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1974. · Zbl 0281.10001
[16] A. Leibman, Multiple recurrence theorem for measure preserving actions of a nilpotent group, Geometric and Functional Analysis 8 (1998), 853–931. · Zbl 0917.28017 · doi:10.1007/s000390050077
[17] A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel Journal of Mathematics 146 (2005), 303–315. · Zbl 1080.37002 · doi:10.1007/BF02773538
[18] A. Sárközy, On difference sets of sequences of integers, III, Acta Mathematica Hungarica 31 (1978), 355–386. · Zbl 0387.10034 · doi:10.1007/BF01901984
[19] T. Tao, Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory and Dynamical Systems 28 (2008), 657–688. · Zbl 1181.37004 · doi:10.1017/S0143385708000011
[20] M. Wierdl, Pointwise ergodic theorem along the prime numbers, Israel Journal of Mathematics 64 (1988), 315–336. · Zbl 0695.28007 · doi:10.1007/BF02882425
[21] T. Wooley and T. Ziegler, Multiple recurrence and convergence along the primes, American Journal of Mathematics, to appear. · Zbl 1355.11005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.