×

On the constant in Burgess’ bound for the number of consecutive residues or non-residues. (English) Zbl 1301.11061

Let \(\chi\) be a non-principal Dirichlet character to the prime modulus \(p\) which is constant on \((N, N+H]\). A well known result due to D. A. Burgess is \(H=O(p^{1/4}\log p)\). In this paper, the author gives the quantitative versions. The following results are proved:
\[ H<(\pi e \sqrt 6/3 +o(1))p^{1/4}\log p; \tag{1} \]
\[ H<7p^{1/4}\log p\quad\text{for}\;p\geq 5\cdot 10^{55}\tag{2} \] and \[ H<7.06p^{1/4}\log p\quad\text{for}\;p\geq 5\cdot 10^{18}. \]

MSC:

11L40 Estimates on character sums
11N25 Distribution of integers with specified multiplicative constraints
11L26 Sums over arbitrary intervals
11A15 Power residues, reciprocity

References:

[1] A. Brauer, Über die Verteilung der Potenzreste , Math. Z. 35 (1932), no. 1, 39-50. · Zbl 0003.33903 · doi:10.1007/BF01186547
[2] E. Bombieri, Counting points on curves over finite fields (d’après S. A. Stepanov) , Séminaire Bourbaki, 25ème année (1972/1973), Exp. No. 430, pp. 234-241. Lecture Notes in Math., Vol. 383, Springer, Berlin, 1974. · Zbl 0307.14011
[3] D.A. Burgess, On character sums and primitive roots , Proc. of the London Math. Soc. 12 (3) (1962), 179-192. · Zbl 0106.04003 · doi:10.1112/plms/s3-12.1.179
[4] D.A. Burgess, A note on the distribution of residues and non-residues , J. London Math. Soc. 38 (1963), 253-256. · Zbl 0118.04703 · doi:10.1112/jlms/s1-38.1.253
[5] J.W.S. Cassels, An introduction to Diophantine approximation , Cambridge Tracts in Mathematics and Mathematical Physics, No. 45. Cambridge University Press, New York, 1957. · Zbl 0077.04801
[6] H. Davenport, Multiplicative number theory , Third edition. Revised and with a preface by Hugh L. Montgomery. Graduate Texts in Mathematics, 74. Springer-Verlag, New York, 2000. · Zbl 1002.11001
[7] R.H. Hudson, A note on the second smallest prime \(k\)th power nonresidue , Proc. Amer. Math. Soc. 46 (1974), 343-346. · Zbl 0302.10004 · doi:10.2307/2039926
[8] P. Hummel, On consecutive quadratic non-residues: a conjecture of Issai Schur , J. Number Theory 103 (2003), no. 2, 257-266. · Zbl 1049.11006 · doi:10.1016/j.jnt.2003.06.003
[9] H. Iwaniec and E. Kowalski, Analytic number theory , American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI, 2004. · Zbl 1059.11001
[10] K.K. Norton, Numbers with small prime factors, and the least \(k\)th power non-residue , Memoirs of the American Mathematical Society, 106. American Mathematical Society, Providence, R.I. 1971. · Zbl 0211.37801
[11] K.K. Norton, Bounds for sequences of consecutive power residues. I , Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 213-220. Amer. Math. Soc., Providence, R.I., 1973. · Zbl 0269.10025
[12] W.M. Schmidt, Zur Methode von Stepanov , Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, IV. Acta Arith. 24 (1973), 347-367.
[13] W.M. Schmidt, Equations over finite fields. An elementary approach , Lecture Notes in Mathematics, Vol. 536. Springer-Verlag, Berlin-New York, 1976. · Zbl 0329.12001 · doi:10.1007/BFb0080437
[14] S.A. Stepanov, Elementary method in the theory of congruences for a prime modulus , Acta Arith. 17 (1970), 231-247. · Zbl 0226.12012
[15] A. Weil, On some exponential sums , Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 204-207. · Zbl 0032.26102 · doi:10.1073/pnas.34.5.204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.