×

Pseudorandomness for width-2 branching programs. (English) Zbl 1300.68037

Summary: We show that pseudorandom generators that fool degree-\(k\) polynomials over \(\mathbb{F}_2\) also fool branching programs of width-2 and polynomial length that read \(k\) bits of input at a time. This model generalizes polynomials of degree \(k\) over \(\mathbb{F}_2\) and includes some other interesting classes of functions, for instance, \(k\)-DNFs.
The proof essentially follows by a new decomposition theorem for width-2 branching programs. The theorem states that if \(f\) can be computed by a width-2 branching program that reads \(k\) bits of input at a time, then \(f\) can be (roughly) written as a sum \(f=\sum_i \alpha_i f_i\), where each \(f\) is a degree-\(k\) polynomial and \(\sum_i|\alpha_i|\) is small.
A. Bogdanov and B. Viola [SIAM J. Comput. 39, No. 6, 2464–2486 (2010; Zbl 1211.68215)] constructed a pseudorandom generator that fools degree-\(k\) polynomials over \(\mathbb{F}_2\) for arbitrary \(k\). Their construction consists of summing \(k\) independent copies of a generator that \(\varepsilon\)-fools linear functions. Our second result investigates the limits of such constructions: We show that, in general, such a construction is not pseudorandom against bounded fan-in circuits of depth \(O((\log(k\log 1/\varepsilon))^2)\).

MSC:

68Q87 Probability in computer science (algorithm analysis, random structures, phase transitions, etc.)
68W20 Randomized algorithms

Citations:

Zbl 1211.68215

References:

[1] [1] DAVIDA. MIXBARRINGTON: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. System Sci., 38(1):150–164, 1989. Preliminary version inSTOC’86. [doi:10.1016/0022-0000(89)90037-8]285
[2] [2] LOUAYM. J. BAZZI: Polylogarithmic independence can fool DNF formulas. SIAM J. Comput., 38(6):2220–2272, 2009. Preliminary version inFOCS’07. [doi:10.1137/070691954]284
[3] [3] STUARTJ. BERKOWITZ: On computing the determinant in small parallel time using a small number of processors. Inform. Process. Lett., 18(3):147–150, 1984. [doi:10.1016/0020-0190(84)90018-8] 290
[4] [4] ANDREJBOGDANOV ANDEMANUELEVIOLA: Pseudorandom bits for polynomials. SIAM J. Comput., 39(6):2464–2486, 2010. Preliminary version inFOCS’07. [doi:10.1137/070712109]284
[5] [5] ALLANBORODIN, JOACHIM VON ZURGATHEN,ANDJOHNE. HOPCROFT: Fast parallel matrix and GCD computations. Inf. Control, 52(3):241–256, 1982. Preliminary version inFOCS’82. [doi:10.1016/S0019-9958(82)90766-5]290
[6] [6] MARKBRAVERMAN: Polylogarithmic independence fools AC0circuits. J. ACM, 57(5):28, 2010. Preliminary version inCCC’09, exposition inComm. ACM. [doi:10.1145/1754399.1754401]284 THEORY OFCOMPUTING, Volume 9 (7), 2013, pp. 283–293290 PSEUDORANDOMNESS FOR WIDTH-2BRANCHING PROGRAMS
[7] [7] LASZLOCSANKY: Fast parallel matrix inversion algorithms. SIAM J. Comput., 5(4):618–623, 1976. Preliminary version inFOCS’75. [doi:10.1137/0205040]290
[8] [8] NATHANLINIAL ANDNOAMNISAN: Approximate inclusion-exclusion.Combinatorica, 10(4):349–365, 1990. Preliminary version inSTOC’90. [doi:10.1007/BF02128670]284
[9] [9] SHACHARLOVETT: Unconditional pseudorandom generators for low degree polynomials. Theory of Computing, 5(3):69–82, 2009. Preliminary version inSTOC’08. [doi:10.4086/toc.2009.v005a003] 284
[10] [10] KETANMULMULEY: A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica, 7(1):101–104, 1987. Preliminary version inSTOC’86. [doi:10.1007/BF02579205] 290
[11] [11] JOSEPHNAOR ANDMONINAOR: Small-bias probability spaces: Efficient constructions and applications.SIAM J. Comput., 22(4):838–856, 1993.Preliminary version inSTOC’90. [doi:10.1137/0222053]284,285
[12] [12] ALEXANDERA. RAZBOROV: Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Matematicheskie Zametki, 41:598–607, 1987. English translation:Math. Notes of the Acad. Sci. USSR, Vol. 41 (4), 1987, pp. 333-338.284
[13] [13] ALEXANDERA. RAZBOROV: A simple proof of Bazzi’s theorem. ACM Transactions on Computation Theory, 1(1):3, 2009.ECCC. [doi:10.1145/1490270.1490273]284
[14] [14] ROMANSMOLENSKY: Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proc. 19th STOC, pp. 77–82. ACM Press, 1987. [doi:10.1145/28395.28404]284
[15] [15] LUCATREVISAN: A note on approximate counting for k-DNF. In Proc. 8th Internat. Workshop on Randomization and Computation (RANDOM’04), pp. 417–425. Springer, 2004. [doi:10.1007/9783-540-27821-4_37]285 · Zbl 1106.68427
[16] [16] EMANUELEVIOLA: The sum of D small-bias generators fools polynomials of degree D. Comput. Complexity, 18(2):209–217, 2009. Preliminary version inCCC’08. [doi:10.1007/s00037-009-02735]284
[17] [17] EMANUELEVIOLA ANDAVIWIGDERSON: Norms, XOR lemmas, and lower bounds for polynomials and protocols. Theory of Computing, 4(7):137–168, 2008. Preliminary version inCCC’07. [doi:10.4086/toc.2008.v004a007]285 THEORY OFCOMPUTING, Volume 9 (7), 2013, pp. 283–293291 ANDREJBOGDANOV, ZEEVDVIR, ELADVERBIN,ANDAMIRYEHUDAYOFF
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.