×

Families of completely positive maps associated with monotone metrics. (English) Zbl 1300.15009

Let \(\mathbb{M}_d,~\mathbb{H}_d\) and \(\mathbb{P}_d\) denote the sets of complex square matrices, complex Hermitian matrices and positive definite matrices of order \(d\), respectively. A real-valued function \(f\) on \((0,\infty)\) is said to be operator monotone if \(A \geq B\) implies that \(f(A) \geq f(B)\), where \(A\geq B\) stands for \(A-B\) being positive semidefinite with \(A,B \in \mathbb{H}_d\). A real-valued function \(k\) on \((0,\infty)\) is called operator convex if \(k(\lambda A + (1-\lambda)B) \leq \lambda k(A) + (1-\lambda) k(B)\) for all \(\lambda \in (0,1)\) and for all \(A,B \in \mathbb{P}_d\) for any positive integer \(d\). \(k\) is called operator concave if \(-k\) is operator convex. Let \(\mathcal K\) denote the class of functions \(k: (0,\infty) \rightarrow (0,\infty)\) which are operator convex, satisfying the symmetry condition \(xk(x)=k(x^{-1})\) and the normalization condition \(k(1)=1\). The authors prove an integral representation for functions that belong to \(\mathcal K\) using which necessary and sufficient conditions for a function to belong to \(\mathcal K\) are given. These statements are given in terms of operator convexity, operator concavity and operator monotonicity.
A linear map \(\varPhi:\mathbb{M}_d \rightarrow \mathbb{M}_d\) is called positive if it is positivity preserving, namely \(\varPhi (\mathbb {P}_d) \subseteq \bar {\mathbb{P}_d}\), where \(\bar {\mathbb{P}_d}\) denotes the set of complex positive semidefinite matrices. \(\varPhi\) is called completely positive if \(\varPhi \otimes I\) is positive on \(\mathbb{M}_d \otimes \mathbb{M}_n\) for all positive integers \(n\). Given \(k \in \mathcal K\), consider the function \(\phi^k(x,y):=(1/y)k(x/y)\) for \(x,y >0\). Let \(D\) be unitarily diagonalizable so that there is a unitary matrix \(U\) such that \(D=U \operatorname{diag}(\lambda_1,\dots, \lambda_d) U^*\). Define \(\varOmega^k_D(X)=U([\phi(\lambda_i,\lambda_j)] \circ [U^*XU])U^*\), where \(\circ\) denotes the Hadamard entrywise product. The authors also study the problem of when these operators are completely positive. A complete analysis of the behaviour of one-parameter families for which either the map or its inverse is completely positive is presented.

MSC:

15A86 Linear preserver problems
15B48 Positive matrices and their generalizations; cones of matrices
26A51 Convexity of real functions in one variable, generalizations
42A82 Positive definite functions in one variable harmonic analysis

References:

[1] Akhiezer, N. I.; Glazman, I. M., Theory of Linear Operators in Hilbert Space (1993), Dover Publications: Dover Publications New York, Reprint of the 1961 and 1963 translations. Two volumes bound as one · Zbl 0874.47001
[3] Ando, T., Concavity of certain maps on positive definite matrices and applications to Hadamard Products, Linear Algebra Appl., 26, 203-241 (1979) · Zbl 0495.15018
[4] Ando, T.; Hiai, F., Operator log-convex functions and operator means, Math. Ann., 350, 611-630 (2011) · Zbl 1221.47028
[5] Araki, H., Relative entropy of states of von Neumann algebras II, Publ. Res. Inst. Math. Sci., 13, 173-192 (1977) · Zbl 0374.46055
[6] Besenyei, Á.; Petz, D., Completely positive mappings and mean matrices, Linear Algebra Appl., 435, 984-997 (2011) · Zbl 1223.26048
[7] Bhatia, R., Matrix Analysis (1996), Springer: Springer New York · Zbl 0863.15001
[8] Bhatia, R.; Kosaki, H., Mean matrices and infinite divisibility, Linear Algebra Appl., 424, 36-54 (2007) · Zbl 1124.15015
[9] Bhatia, R.; Parthasarathy, K. R., Positive definite functions and operator inequalities, Bull. Lond. Math. Soc., 32, 214-228 (2000) · Zbl 1037.15021
[10] Choi, M.-D., Completely positive linear maps on complex matrices, Linear Algebra Appl., 10, 285-290 (1975) · Zbl 0327.15018
[11] Cvetković, A. S.; Milovanović, G. V., Positive definite solutions of some matrix equations, Linear Algebra Appl., 429, 2401-2414 (2008) · Zbl 1154.15018
[12] Donoghue, W. F., Monotone Matrix Functions and Analytic Continuation (1974), Springer: Springer Berlin, Heidelberg, New York · Zbl 0278.30004
[13] Franz, U.; Hiai, F.; Ricard, É., Higher order extension of Löwnerʼs theory: Operator \(k\)-tone functions, Trans. Amer. Math. Soc. (2013), in press
[14] Gnedenko, B. V.; Kolmogorov, A. N., Limits Distributions for Sums of Independent Random Variables (1968), Addison-Wesley: Addison-Wesley Reading
[15] Hansen, F., Metric adjusted skew information, Proc. Natl. Acad. Sci. USA, 105, 9909-9916 (2008) · Zbl 1205.94058
[16] Hansen, F.; Pedersen, G. K., Jensenʼs inequality for operators and Löwnerʼs theorem, Math. Ann., 258, 229-241 (1982) · Zbl 0473.47011
[17] Hasegawa, H., \(α\)-Divergence of the non-commutative information geometry, Rep. Math. Phys., 33, 87-93 (1993) · Zbl 0806.62006
[18] Hiai, F., Matrix analysis: Matrix monotone functions, matrix means, and majorization, Interdiscip. Inform. Sci., 16, 139-248 (2010) · Zbl 1206.15019
[19] Hiai, F.; Kosaki, H., Means for matrices and comparison of their norms, Indiana Univ. Math. J., 48, 899-936 (1999) · Zbl 0934.15023
[20] Hiai, F.; Kosaki, H., Means of Hilbert Space Operators, Lecture Notes in Math., vol. 1820 (2003), Springer · Zbl 1048.47001
[21] Hiai, F.; Mosonyi, M.; Petz, D.; Bény, C., Quantum \(f\)-divergences and error correction, Rev. Math. Phys., 23, 691-747 (2011) · Zbl 1230.81007
[22] Hiai, F.; Sano, T., Loewner matrices of matrix convex and monotone functions, J. Math. Soc. Japan, 64, 343-364 (2012) · Zbl 1261.15026
[23] Jenčová, A.; Ruskai, M. B., A unified treatment of convexity of relative entropy and related trace functions, with conditions for equality, Rev. Math. Phys., 22, 1099-1121 (2010) · Zbl 1218.81025
[24] King, C.; Matsumoto, K.; Nathanson, M.; Ruskai, M. B., Properties of conjugate channels with application to additivity and multiplicativity, Markov Process. Related Fields, 13, 391-423 (2007) · Zbl 1139.81020
[25] Kosaki, H., Arithmetic-geometric mean and related inequalities for operators, J. Funct. Anal., 156, 429-451 (1998) · Zbl 0920.47019
[26] Kosaki, H., On infinite divisibility of positive definite functions arising from operator means, J. Funct. Anal., 254, 84-108 (2008) · Zbl 1141.43004
[27] Kosaki, H., Strong monotonicity for various means (2009), preprint, available from Graduate School of Mathematics, Kyushu University, Preprint Series 2013-1
[28] Kosaki, H., Positive definiteness of functions with applications to operator norm inequalities, Mem. Amer. Math. Soc., 212, 997 (2011), vi+80 pp · Zbl 1227.47005
[29] Kraus, F., Über konvexe Matrixfunktionen, Math. Z., 41, 18-42 (1936) · JFM 62.1079.02
[30] Kraus, K.; Böhm, A.; Dollard, J. D.; Wootters, W. H., States, Effects and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Phys., vol. 190 (1983), Springer · Zbl 0545.46049
[31] Kubo, F.; Ando, T., Means of positive linear operators, Math. Ann., 246, 205-224 (1980) · Zbl 0412.47013
[32] Kumagai, W., A characterization of extended monotone metrics, Linear Algebra Appl., 434, 224-231 (2011) · Zbl 1206.94016
[33] Lesniewski, A.; Ruskai, M. B., Monotone Riemannian metrics and relative entropy on noncommutative probability spaces, J. Math. Phys., 40, 5702-5724 (1999) · Zbl 0968.81006
[34] Lieb, E. H., Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. Math., 11, 267-288 (1973) · Zbl 0267.46055
[35] Lindblad, G., Expectations and entropy inequalities, Comm. Math. Phys., 39, 111-119 (1974) · Zbl 0294.46052
[36] Löwner, K., Über monotone Matrix Funktionen, Math. Z., 38, 177-216 (1934) · JFM 60.0055.01
[37] Lukacs, E., Characteristic Functions (1970), Griffin: Griffin London · Zbl 0201.20404
[38] Morozova, E. A.; Chentsov, N. N., Markov invariant geometry on state manifolds, Itogi Nauki i Tekhniki. Itogi Nauki i Tekhniki, J. Soviet Math., 56, 2648-2669 (1991), (in Russian), translated in: · Zbl 0734.60004
[39] Nakamura, Y., Classes of operator monotone functions and Stieltjes functions, (Dym, H.; etal., The Gohberg Anniversary Collection, vol. II. The Gohberg Anniversary Collection, vol. II, Oper. Theory Adv. Appl., vol. 41 (1989), Birkhäuser), 395-404 · Zbl 0685.47015
[40] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000), Cambridge Press · Zbl 1049.81015
[41] Ohya, M.; Petz, D., Quantum Entropy and Its Use (1993), Springer: Springer Heidelberg, second edition, 2004 · Zbl 0891.94008
[42] Paulsen, V., Completely Bounded Maps and Operator Algebras (2003), Cambridge Press
[43] Petz, D., Quasi-entropies for states of a von Neumann algebra, Publ. Res. Inst. Math. Sci., 21, 781-800 (1985) · Zbl 0606.46039
[44] Petz, D., Quasi-entropies for finite quantum systems, Rep. Math. Phys., 23, 57-65 (1986) · Zbl 0629.46061
[45] Petz, D., Monotone metrics on matrix spaces, Linear Algebra Appl., 244, 81-96 (1996) · Zbl 0856.15023
[46] Petz, D., Information-geometry of quantum states, (Hudson, R. L.; etal., Quantum Probability Communications, vol. 10 (1998), World Scientific: World Scientific Singapore), 135-158 · Zbl 0996.00014
[47] Petz, D., Quantum Information Theory and Quantum Statistics (2008), Springer: Springer Berlin, Heidelberg · Zbl 1145.81002
[48] Petz, D.; Hasegawa, H., On the Riemannian metric of \(α\)-entropies of density matrices, Lett. Math. Phys., 38, 221-225 (1996) · Zbl 0855.58070
[49] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, I: Functional Analysis (1972), Academic Press: Academic Press New York, London, second edition, 1980 · Zbl 0242.46001
[50] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness (1975), Academic Press: Academic Press New York, London · Zbl 0308.47002
[51] Ruskai, M. B., Beyond strong subadditivity? Improved bounds on the contraction of generalized relative entropy, Rev. Math. Phys.. (Aizenman, M.; Araki, H., The State of Matter (1994), World Scientific), 6, 350-366 (1994), (with an appendix on applications to logarithmic Sobolev inequalities), reprinted
[52] Ruskai, M. B., Remarks on Kimʼs strong subadditivity matrix inequality: extensions and equality conditions
[53] Stinespring, W. F., Positive functions on \(C^\ast \)-algebras, Proc. Amer. Math. Soc., 6, 211-216 (1955) · Zbl 0064.36703
[54] Temme, K.; Kastoryano, M. J.; Ruskai, M. B.; Wolf, M. M.; Verstraete, F., The \(\chi^2\)-divergence and mixing times of quantum Markov processes, J. Math. Phys., 51, 122201 (2010) · Zbl 1314.81124
[55] Tomamichel, M.; Colbeck, R.; Renner, R., A fully quantum asymptotic equipartition property, IEEE Trans. Inform. Theory, 55, 5840-5847 (2009) · Zbl 1367.81095
[56] Wigner, E. P.; Yanase, M. M., Information contents of distributions, Proc. Natl. Acad. Sci. USA, 49, 910-918 (1963) · Zbl 0128.14104
[57] Zhan, X., Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl., 20, 466-470 (1999) · Zbl 0921.15011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.