×

Fractional resonance-based \(RL_{\beta}C_{\alpha}\) filters. (English) Zbl 1299.94121

Summary: We propose the use of a fractional order capacitor and fractional order inductor with orders \(0\leq \alpha,\beta\leq 1\), respectively, in a fractional \(RL_{\beta}C_{\alpha}\) series circuit to realize fractional-step lowpass, highpass, bandpass, and bandreject filters. MATLAB simulations of lowpass and highpass responses having orders of \(\alpha+\beta=1.5\) and \(1.9\) and bandpass and bandreject responses having orders of 1.5 and 1.9 are given as examples. PSPICE simulations of 1.1, 1.5, and 1.9 order lowpass and 1.0 and 1.4 order bandreject filters using approximated fractional order capacitors and fractional order inductors verify the implementations.

MSC:

94C05 Analytic circuit theory
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

Keywords:

PSPICE; MATLAB

Software:

Matlab
Full Text: DOI

References:

[1] A. S. Elwakil, “Fractional-order circuits and systems: an emerging interdisciplinary research area,” IEEE Circuits and Systems Magazine, vol. 10, no. 4, pp. 40-50, 2010. · doi:10.1109/MCAS.2010.938637
[2] J. A. Tenreiro Machado, I. S. Jesus, A. Galhano, and J. Boaventura Cunha, “Fractional order electromagnetics,” Signal Processing, vol. 86, no. 10, pp. 2637-2644, 2006. · Zbl 1172.94454 · doi:10.1016/j.sigpro.2006.02.010
[3] N. Sebaa, Z. E. A. Fellah, W. Lauriks, and C. Depollier, “Application of fractional calculus to ultrasonic wave propagation in human cancellous bone,” Signal Processing, vol. 86, no. 10, pp. 2668-2677, 2006. · Zbl 1172.94482 · doi:10.1016/j.sigpro.2006.02.015
[4] J. Sabatier, M. Aoun, A. Oustaloup, G. Grégoire, F. Ragot, and P. Roy, “Fractional system identification for lead acid battery state of charge estimation,” Signal Processing, vol. 86, no. 10, pp. 2645-2657, 2006. · Zbl 1172.93399 · doi:10.1016/j.sigpro.2006.02.030
[5] J. D. Gabano and T. Poinot, “Fractional modelling and identification of thermal systems,” Signal Processing, vol. 91, no. 3, pp. 531-541, 2011. · Zbl 1203.94029 · doi:10.1016/j.sigpro.2010.02.005
[6] A. G. Radwan, A. S. Elwakil, and A. M. Soliman, “Fractional-order sinusoidal oscillators: design procedure and practical examples,” IEEE Transactions on Circuits and Systems, vol. 55, no. 7, pp. 2051-2063, 2008. · Zbl 1191.94175 · doi:10.1109/TCSI.2008.918196
[7] A. G. Radwan, A. S. Elwakil, and A. M. Soliman, “On the generalization of second-order filters to the fractional-order domain,” Journal of Circuits, Systems and Computers, vol. 18, no. 2, pp. 361-386, 2009. · doi:10.1142/S0218126609005125
[8] A. Soltan, A. G. Radwan, and A. M. Soliman, “Butterworth passive filter in the fractional order,” in Proceedings of the International Conference on Microelectronics (ICM ’11), pp. 1-5, Hammamet, Tunisia, 2011. · doi:10.1109/ICM.2011.6177365
[9] P. Ahmadi, B. Maundy, A. S. Elwakil, and L. Belostostski, “High-quality factor asymmetric-slope band-pass filters: a fractional-order capacitor approach,” IET Circuits, Devices & Systems, vol. 6, no. 3, pp. 187-197, 2012.
[10] A. Lahiri and T. K. Rawat, “Noise analysis of single stage fractional-order low pass filter using stochastic and fractional calculus,” ECTI Transactions on Electronics and Communications, vol. 7, no. 2, pp. 136-143, 2009.
[11] A. Radwan, “Stability analysis of the fractional-order RL\beta C\alpha circuit,” Journal of Fractional Calculus and Applications, vol. 3, no. 1, pp. 1-15, 2012.
[12] T. J. Freeborn, B. Maundy, and A. S. Elwakil, “Field programmable analogue array implementations of fractional step filters,” IET Circuits, Devices & Systems, vol. 4, no. 6, pp. 514-524, 2010.
[13] B. Maundy, A. S. Elwakil, and T. J. Freeborn, “On the practical realization of higher-order filters with fractional stepping,” Signal Processing, vol. 91, no. 3, pp. 484-491, 2011. · Zbl 1203.94043 · doi:10.1016/j.sigpro.2010.06.018
[14] T. J. Freeborn, B. Maundy, and A. S. Elwakil, “Fractional-step Tow-Thomas biquad filters,” Nonlinear Theory and Its Applications, IEICE (NOLTA), vol. 3, no. 3, pp. 357-374, 2012.
[15] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, vol. 198, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[16] M. Nakagawa and K. Sorimachi, “Basic characteristics of a fractance device,” IEICE-Transactions on Fundamentals of Electronics, Communications and Computer Sciences E, vol. 75, pp. 1814-1819, 1992.
[17] M. Sivarama Krishna, S. Das, K. Biswas, and B. Goswami, “Fabrication of a fractional order capacitor with desired spec- ifications: a study on process identification and characterization,” IEEE Transactions on Electron Devices, vol. 58, no. 11, pp. 4067-4073, 2011.
[18] T. Haba, G. Ablart, T. Camps, and F. Olivie, “Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon,” Chaos, Solitons Fractals, vol. 24, no. 2, pp. 479-490, 2005.
[19] J. J. Quintana, A. Ramos, and I. Nuez, “Identification of the fractional impedance of ultracapacitors,” in Proceedings of the 2nd Workshop on Fractional Differentiation and Its Applications (IFAC ’06), pp. 289-293, 2006.
[20] A. Dzieliński, G. Sarwas, and D. Sierociuk, “Comparison and validation of integer and fractional order ultracapacitor models,” Advances in Difference Equations, vol. 2011, article 11, 2011. · Zbl 1268.34091
[21] I. Podlubny, I. Petrá\vs, B. M. Vinagre, P. O’Leary, and L’. Dor, “Analogue realizations of fractional-order controllers,” Nonlinear Dynamics: An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, vol. 29, no. 1-4, pp. 281-296, 2002. · Zbl 1041.93022 · doi:10.1023/A:1016556604320
[22] B. Krishna and K. Reddy, “Active and passive realization of fractance device of order 1/2,” Active and Passive Electronic Components, vol. 2008, Article ID 369421, 5 pages, 2008. · doi:10.1155/2008/369421
[23] R. Schaumann and M. E. Van Valkenburg, Design of Analog Filters, Oxford University Press, 2001.
[24] L. T. Bruton, “Network transfer functions using the concept of frequency-dependent negative resistance,” IEEE Transactions on Circuit Theory, vol. CT-16, no. 3, pp. 406-408, 1969.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.