×

Almost-convergent sequences with respect to polynomial hypergroups. (English) Zbl 1299.40002

G. G. Lorentz [Acta Math., Uppsala 80, 167–190 (1948; Zbl 0031.29501)] gave a characterisation of sequences for which all Banach limits coincide (almost invariant sequences) as those sequences \((\alpha_n)\) for which the arithmetic means \(\frac 1{k+1}(\alpha_n+\ldots +\alpha_{n+k})\) converge uniformly in \(n\) to some value \(d\) as \(k\to\infty\). If \(\mathbb N_0\) is equipped with a certain polynomial hypergroup structure analogous results can be stated with respect to invariance of operators \(T_m\) defined via convolution instead of the shift operator. A sequence \((\alpha(n))_{n\in\mathbb N_0}\) is then called almost invariant if all \(T_m\)-invariant means of \((\alpha_n)\) coincide. This property is shown to be equivalent to the uniform convergence of averages built by these generalised shift operators to the \(T_m\)-invariant mean of \((\alpha_n)\).

MSC:

40A05 Convergence and divergence of series and sequences
43A62 Harmonic analysis on hypergroups

Citations:

Zbl 0031.29501
Full Text: DOI

References:

[1] W. R. Bloom and H. Heyer, Harmonic Analysis and Probability Measures on Hypergroups, de Gruyter (Berlin, 1995). · Zbl 0828.43005
[2] C. Chou, Weakly almost periodic functions and almost convergent functions on a group, Trans. Amer. Math. Soc., 206 (1975), 175–200. · Zbl 0303.43017 · doi:10.1090/S0002-9947-1975-0394062-8
[3] H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press (Oxford, 2000). · Zbl 0981.46043
[4] M. M. Day, Amenable semigroups, Illinois J. Math., 1 (1957), 509–544. · Zbl 0078.29402
[5] S. A. Douglas, On a concept of summability in amenable semigroups, Math. Scand., 23 (1968), 96–102. · Zbl 0181.41803
[6] E. Granirer, Functional analytic properties of extremely amenable semigroups, Trans. Amer. Math. Soc., 137 (1969), 53–76. · Zbl 0202.40703 · doi:10.1090/S0002-9947-1969-0239408-3
[7] V. Hösel, M. Hofmann and R. Lasser, Means and Folner condition on polynomial hypergroups, Mediterr. J. Math., 7 (2010), 75–88. · Zbl 1196.42024 · doi:10.1007/s00009-010-0028-1
[8] R. Lasser, Orthogonal polynomials and hypergroups, Rend. Mat., 3 (1983), 185–209. · Zbl 0538.33010
[9] R. Lasser, Orthogonal polynomials and hypergroups II – the symmetric case, Trans. Amer. Math. Soc., 341 (1994), 749–770. · Zbl 0804.42013
[10] R. Lasser, Point derivations on the L 1-algebra of polynomial hypergroups, Coll. Math., 116 (2009), 15–30. · Zbl 1167.43007 · doi:10.4064/cm116-1-2
[11] A. T. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups, Fund. Math., 118 (1983), 161–175. · Zbl 0545.46051
[12] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167–190. · Zbl 0031.29501 · doi:10.1007/BF02393648
[13] A. L. T. Paterson, Amenability, Amer. Math. Soc. (Providence, 1988).
[14] M. Skantharajah, Amenable hypergroups, Illinois J. Math., 36 (1992), 15–46. · Zbl 0755.43003
[15] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. (Providence, 1959).
[16] S. Wolfenstetter, Weakly almost periodic functions on hypergroups, Monatsh. Math., 96 (1983), 67–79. · Zbl 0512.43004 · doi:10.1007/BF01298935
[17] J. C. S. Wong, Topologically stationary locally compact groups and amenability, Trans. Amer. Math. Soc., 144 (1969), 351–363. · Zbl 0202.02802 · doi:10.1090/S0002-9947-1969-0249536-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.