×

Efficient recognition of totally nonnegative matrix cells. (English) Zbl 1299.15038

A real \(m\times p\) matrix \(M\) is totally nonnegative (totally positive) if each of its minors is nonnegative (strictly positive). Totally nonnegative matrices arise in many areas of mathematics and have lately been studied with increasing interest. Checking all minors is clearly impractical and M. Gasca and J. M. Peña [Linear Algebra Appl. 165, 25–44 (1992; Zbl 0749.15010)] have provided a well-known criterion for total positivity involving the testing of a specified set of mp minors and this number of minors is best possible, but many other choices of such sets of mp minors are possible. In contrast, there is no known small set of minors for testing for total nonnegativity. In this paper the authors go a step in this direction. Stated briefly, they show that the space of real totally nonnegative \(m\times p\) matrices has a stratification into totally nonnegative cells, the largest of which is the space of totally positive matrices. In their main result they then provide a set of \(mp\) minors for deciding whether or not an arbitrary real \(m\times p\) matrix belongs to a specified non-empty cell. This extends the criterion of Gasca and Peña for the totally positive cell to any non-empty cell.

MSC:

15B48 Positive matrices and their generalizations; cones of matrices

Citations:

Zbl 0749.15010

References:

[1] T. Ando, Totally positive matrices, Linear Algebra Appl.90, 165-219 (1987). · Zbl 0613.15014 · doi:10.1016/0024-3795(87)90313-2
[2] G. Cauchon, Spectre premier de Oq(Mn(k)): image canonique et séparation normale, J. Algebra260(2), 519-569 (2003). · Zbl 1024.16001 · doi:10.1016/S0021-8693(02)00543-4
[3] S.M. Fallat, C.R. Johnson, Totally Nonnegative Matrices. Princeton Series in Applied Mathematics (Princeton University Press, Princeton, 2011). · Zbl 1390.15001
[4] S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, J. Am. Math. Soc.12(2), 335-380 (1999). · Zbl 0913.22011 · doi:10.1090/S0894-0347-99-00295-7
[5] S. Fomin, A. Zelevinsky, Total positivity: tests and parameterizations, Math. Intell.22(1), 23-33 (2000). · Zbl 1052.15500 · doi:10.1007/BF03024444
[6] M. Gasca, J.M. Peña, Total positivity and Neville elimination, Linear Algebra Appl.165, 25-44 (1992). · Zbl 0749.15010 · doi:10.1016/0024-3795(92)90226-Z
[7] M. Gasca, J.M. Peña, Total positivity, QR factorization and Neville elimination, SIAM J. Matrix Anal. Appl.14, 1132-1140 (1993). · Zbl 0788.65052 · doi:10.1137/0614077
[8] K.R. Goodearl, S. Launois, T.H. Lenagan, Totally nonnegative cells and matrix Poisson varieties, Adv. Math.226(1), 779-826 (2011). · Zbl 1210.14055 · doi:10.1016/j.aim.2010.07.010
[9] K.R. Goodearl, S. Launois, T.H. Lenagan, Torus-invariant prime ideals in quantum matrices, totally nonnegative cells and symplectic leaves, Math. Z.269, 29-45 (2011). · Zbl 1234.16018 · doi:10.1007/s00209-010-0714-5
[10] K.R. Goodearl, T.H. Lenagan, LU decomposition of totally nonnegative matrices, Linear Algebra Appl.436, 2554-2566 (2012). · Zbl 1236.15030 · doi:10.1016/j.laa.2011.11.005
[11] S. Launois, T.H. Lenagan, From totally nonnegative matrices to quantum matrices and back, via Poisson geometry, to appear in the Proceedings of the Belfast Workshop on Algebra, Combinatorics and Dynamics (2009). arXiv:0911.2990 · Zbl 1385.16024
[12] A. Pinkus, Totally Positive Matrices. Cambridge Tracts in Mathematics, vol. 181 (Cambridge University Press, Cambridge, 2010). · Zbl 1185.15028
[13] A. Postnikov, Total positivity, grassmannians and networks. arXiv:math/0609764.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.