×

De Sitter ground state of scalar-tensor gravity and its primordial perturbation. (English) Zbl 1298.83023

Summary: Scalar-tensor gravity is one of the most competitive gravity theory to Einstein’s relativity. We reconstruct the exact de Sitter solution in scalar-tensor gravity, in which the non-minimal coupling scalar is rolling along the potential. This solution may have some relation to the early inflation and present acceleration of the universe. We investigated its primordial quantum perturbation around the adiabatic vacuum. We put forward for the first time that exact de Sitter generates non-exactly scale invariant perturbations. In the conformal coupling case, this model predicts that the tensor mode of the perturbation (gravity wave) is strongly depressed.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C35 Gravitational waves
83F05 Relativistic cosmology

References:

[1] N. Birrell and P. Davies, Quantum Fields in Curved Space, Cambrige University Press, Cambrige U.K. (1984). · Zbl 0972.81605
[2] V. Faraoni, Cosmology in Scalar-Tensor Gravity, Kluwer Academic Publishers, Boston U.S.A. (2004). · Zbl 1057.83002
[3] X.-z. Li and J.-z. Lu, Global monopoles in the Brans-Dicke theory, Phys. Rev.D 62 (2000) 107501 [gr-qc/0007002] [SPIRES].
[4] C. Brans and R.H. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev.124 (1961) 925 [SPIRES]. · Zbl 0103.21402 · doi:10.1103/PhysRev.124.925
[5] L.F. Abbott, Gravitational Effects On The SU(5) Breaking Phase Transition For A Coleman-Weinberg Potential, Nucl. Phys.B 185 (1981) 233 [SPIRES]. · doi:10.1016/0550-3213(81)90374-6
[6] B.L. Spokoiny, Inflation And Generation Of Perturbations In Broken Symmetric Theory Of Gravity, Phys. Lett.B 147 (1984) 39 [SPIRES].
[7] D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing Density Fluctuation Spectra in Inflation, Phys. Rev.D 40 (1989) 1753 [SPIRES].
[8] R. Fakir and W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling, Phys. Rev.D 41 (1990) 1783 [SPIRES].
[9] T. Futamase and K.-i. Maeda, Chaotic inflationary scenario of the Universe with a nonminimally coupled inflaton field, Phys. Rev.D 39 (1989) 399 [SPIRES].
[10] A.O. Barvinsky, A.Y. Kamenshchik and A.A. Starobinsky, Inflation scenario via the Standard Model Higgs boson and LHC, JCAP11 (2008) 021 [arXiv:0809.2104] [SPIRES].
[11] F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett.B 659 (2008) 703 [arXiv:0710.3755] [SPIRES].
[12] A. De Simone, M.P. Hertzberg and F. Wilczek, Running Inflation in the Standard Model, Phys. Lett.B 678 (2009) 1 [arXiv:0812.4946] [SPIRES].
[13] V. Faraoni, Non-minimal coupling of the scalar field and inflation, Phys. Rev.D 53 (1996) 6813 [astro-ph/9602111] [SPIRES].
[14] V. Faraoni, Does the non-minimal coupling of the scalar field improve or destroy inflation?, gr-qc/9807066 [SPIRES].
[15] J.-c. Hwang and H. Noh, COBE constraints on inflation models with a massive non-minimal scalar field, Phys. Rev.D 60 (1999) 123001 [astro-ph/9908340] [SPIRES].
[16] Y.-S. Piao, Q.-G. Huang, X.-m. Zhang and Y.-Z. Zhang, Non-minimally coupled tachyon and inflation, Phys. Lett.B 570 (2003) 1 [hep-ph/0212219] [SPIRES]. · Zbl 1038.83511
[17] K. Nozari and S.D. Sadatian, Non-Minimal Inflation after WMAP3, Mod. Phys. Lett.A 23 (2008) 2933 [arXiv:0710.0058] [SPIRES]. · Zbl 1173.85326
[18] S.C. Park and S. Yamaguchi, Inflation by non-minimal coupling, JCAP08 (2008) 009 [arXiv:0801.1722] [SPIRES].
[19] F. Bauer and D.A. Demir, Inflation with Non-Minimal Coupling: Metric vs. Palatini Formulations, Phys. Lett.B 665 (2008) 222 [arXiv:0803.2664] [SPIRES].
[20] S.C. Park, A class of inflation models with non-minimal coupling, J. Korean Phys. Soc.55 (2009) 2136 [arXiv:0809.4536] [SPIRES]. · doi:10.3938/jkps.55.2136
[21] O. Hrycyna and M. Szydlowski, Dynamics of extended quintessence on the phase plane, JCAP04 (2009) 026 [arXiv:0812.5096] [SPIRES].
[22] A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP12 (2009) 003 [arXiv:0904.1698] [SPIRES].
[23] C.-J. Feng and X.-Z. Li, Is Non-minimal Inflation Eternal?, Nucl. Phys.B 841 (2010) 178 [arXiv:0911.3994] [SPIRES]. · Zbl 1207.83077 · doi:10.1016/j.nuclphysb.2010.08.003
[24] M.P. Hertzberg, On Inflation with Non-minimal Coupling, JHEP11 (2010) 023 [arXiv:1002.2995] [SPIRES]. · Zbl 1294.81348 · doi:10.1007/JHEP11(2010)023
[25] C. Pallis, Non-Minimally Gravity-Coupled Inflationary Models, Phys. Lett.B 692 (2010) 287 [arXiv:1002.4765] [SPIRES].
[26] N. Okada, M.U. Rehman and Q. Shafi, Tensor to Scalar Ratio in Non-Minimal ϕ4Inflation, Phys. Rev.D 82 (2010) 043502 [arXiv:1005.5161] [SPIRES].
[27] K. Nozari and S. Shafizadeh, Non-Minimal Inflation Revisited, Phys. Scripta82 (2010) 015901 [arXiv:1006.1027] [SPIRES]. · Zbl 1201.83057 · doi:10.1088/0031-8949/82/01/015901
[28] N. Makino and M. Sasaki, The Density perturbation in the chaotic inflation with nonminimal coupling, Prog. Theor. Phys.86 (1991) 103 [SPIRES]. · doi:10.1143/PTP.86.103
[29] T. Tatekawa and S. Tsujikawa, Second-order matter density perturbations and skewness in scalar-tensor modified gravity models, JCAP09 (2008) 009 [arXiv:0807.2017] [SPIRES].
[30] F. Perrotta, S. Matarrese, M. Pietroni and C. Schimd, Non-linear perturbations in scalar-tensor cosmologies, Phys. Rev.D 69 (2004) 084004 [astro-ph/0310359] [SPIRES].
[31] R. Gannouji and D. Polarski, The growth of matter perturbations in some scalar-tensor DE models, JCAP05 (2008) 018 [arXiv:0802.4196] [SPIRES].
[32] S. Carloni, P.K.S. Dunsby and C. Rubano, Gauge invariant perturbations of Scalar-Tensor Cosmologies: The vacuum case, Phys. Rev.D 74 (2006) 123513 [gr-qc/0611113] [SPIRES].
[33] J.-c. Hwang and H. Noh, Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyon: Unified analyses, Phys. Rev.D 71 (2005) 063536 [gr-qc/0412126] [SPIRES].
[34] Y. Fujii and K. Maeda, The Scalar Tensor Theory of Gravitation, Cambridge university press, Cambridge U.K. (2004). · Zbl 1079.83023 · doi:10.1017/CBO9780511535093
[35] H. Zhang and X.-Z. Li, de Sitter ground state of scalar-tensor gravity and its fluctuation with dust, arXiv:1006.3979 [SPIRES].
[36] T.D. Saini, S. Raychaudhury, V. Sahni and A.A. Starobinsky, Reconstructing the Cosmic Equation of State from Supernova distances, Phys. Rev. Lett.85 (2000) 1162 [astro-ph/9910231] [SPIRES]. · doi:10.1103/PhysRevLett.85.1162
[37] B. Boisseau, G. Esposito-Farese, D. Polarski and A.A. Starobinsky, Reconstruction of a scalar-tensor theory of gravity in an accelerating universe, Phys. Rev. Lett.85 (2000) 2236 [gr-qc/0001066] [SPIRES]. · doi:10.1103/PhysRevLett.85.2236
[38] V. Sahni and A. Starobinsky, Reconstructing Dark Energy, Int. J. Mod. Phys.D 15 (2006) 2105 [astro-ph/0610026] [SPIRES]. · Zbl 1118.83001
[39] S. Nojiri and S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, arXiv:1011.0544 [SPIRES].
[40] H. Peiris and R. Easther, Slow Roll Reconstruction: Constraints on Inflation from the 3 Year WMAP Dataset, JCAP10 (2006) 017 [astro-ph/0609003] [SPIRES].
[41] D.S. Salopek and J.R. Bond, Nonlinear evolution of long wavelength metric fluctuations in inflationary models, Phys. Rev.D 42 (1990) 3936 [SPIRES].
[42] N. Deruelle and M. Sasaki, Conformal equivalence in classical gravity: the example of ’veiled’ General Relativity, arXiv:1007.3563 [SPIRES]. · Zbl 1246.83164
[43] E.E. Flanagan, The conformal frame freedom in theories of gravitation, Class. Quant. Grav.21 (2004) 3817 [gr-qc/0403063] [SPIRES]. · Zbl 1070.83023 · doi:10.1088/0264-9381/21/15/N02
[44] E.F. Bunn, A.R. Liddle and M. White, Four-year COBE normalization of inflationary cosmologies, Phys. Rev.D 54 (1996) 5917 [astro-ph/9607038] [SPIRES].
[45] E.F. Bunn and M.J. White, 1, The Four year COBE normalization and large scale structure, Astrophys. J.480 (1997) 6 [astro-ph/9607060] [SPIRES]. · doi:10.1086/303955
[46] WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl.192 (2011) 18 [arXiv:1001.4538] [SPIRES]. · doi:10.1088/0067-0049/192/2/18
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.