×

Minimal flavour violation extensions of the seesaw. (English) Zbl 1298.81425

Summary: We analyze the most natural formulations of the minimal lepton flavour violation hypothesis compatible with a type-I seesaw structure with three heavy singlet neutrinos \(N\), and satisfying the requirement of being predictive, in the sense that all LFV effects can be expressed in terms of low energy observables. We find a new interesting realization based on the flavour group SU(3)\({}_{e}\) {\(\times\)} SU(3)\({}_{\ell + N}\) (\(e\) and \(\ell\) being the SU(2) singlet and doublet leptons respectively). An intriguing feature of this realization is that, in the normal hierarchy scenario for neutrino masses, it allows for sizeable enhancements of \(\mu \to e\) transitions with respect to LFV processes involving the \(\tau\) lepton. We also discuss how the symmetries of the type-I seesaw allow for a strong suppression of the \(N\) mass scale with respect to the scale of lepton number breaking, without implying a similar suppression for possible mechanisms of \(N\) production.

MSC:

81V22 Unified quantum theories
81V15 Weak interaction in quantum theory
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81U99 Quantum scattering theory

References:

[1] R.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett.B 188 (1987) 99 [SPIRES].
[2] L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett.65 (1990) 2939 [SPIRES]. · doi:10.1103/PhysRevLett.65.2939
[3] A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett.B 500 (2001) 161 [hep-ph/0007085] [SPIRES].
[4] G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavour violation: An effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [SPIRES]. · doi:10.1016/S0550-3213(02)00836-2
[5] S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett.43 (1979) 1566 [SPIRES]. · doi:10.1103/PhysRevLett.43.1566
[6] V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys.B 728 (2005) 121 [hep-ph/0507001] [SPIRES]. · doi:10.1016/j.nuclphysb.2005.08.037
[7] V. Cirigliano and B. Grinstein, Phenomenology of minimal lepton flavor violation, Nucl. Phys.B 752 (2006) 18 [hep-ph/0601111] [SPIRES]. · doi:10.1016/j.nuclphysb.2006.06.021
[8] V. Cirigliano, G. Isidori and V. Porretti, CP violation and Leptogenesis in models with Minimal Lepton Flavour Violation, Nucl. Phys.B 763 (2007) 228 [hep-ph/0607068] [SPIRES]. · Zbl 1116.81371 · doi:10.1016/j.nuclphysb.2006.11.015
[9] G.C. Branco, A.J. Buras, S. Jager, S. Uhlig and A. Weiler, Another look at minimal lepton flavour violation, ℓi → ℓjγ, leptogenesis, and the ratio Mν/ΛLFV, JHEP09 (2007) 004 [hep-ph/0609067] [SPIRES]. · doi:10.1088/1126-6708/2007/09/004
[10] S. Davidson and F. Palorini, Various definitions of minimal flavour violation for leptons, Phys. Lett.B 642 (2006) 72 [hep-ph/0607329] [SPIRES].
[11] M.B. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal Flavour Seesaw Models, JHEP09 (2009) 038 [arXiv:0906.1461] [SPIRES]. · doi:10.1088/1126-6708/2009/09/038
[12] A.S. Joshipura, K.M. Patel and S.K. Vempati, Type I seesaw mechanism for quasi degenerate neutrinos, Phys. Lett.B 690 (2010) 289 [arXiv:0911.5618] [SPIRES].
[13] P. Minkowski, μ → eγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett.B 67 (1977) 421 [SPIRES].
[14] M. Gell-Mann, P. Ramond and R. Slansky, Proceedings of the Supergravity Stony Brook Workshop, New York U.S.A. (1979), P. Van Nieuwenhuizen and D. Freedman eds., North-Holland, Amsterdam The Netherlands (1980).
[15] T. Yanagida, Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe, Tsukuba Japan (1979), A. Sawada and A. Sugamoto eds., KEK Report No.79-18, Tsukuba Japan (1979).
[16] R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett.44 (1980) 912 [SPIRES]. · Zbl 1404.81306 · doi:10.1103/PhysRevLett.44.912
[17] J. Kersten and A.Y. Smirnov, Right-Handed Neutrinos at LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev.D 76 (2007) 073005 [arXiv:0705.3221] [SPIRES].
[18] E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP11 (2009) 036 [arXiv:0908.0161] [SPIRES]. · doi:10.1088/1126-6708/2009/11/036
[19] P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett.B 530 (2002) 167 [hep-ph/0202074] [SPIRES].
[20] Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett.B 533 (2002) 85 [hep-ph/0204049] [SPIRES].
[21] D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-Bimaximal Lepton Mixing and Leptogenesis, Nucl. Phys.B 827 (2010) 34 [arXiv:0908.0907] [SPIRES]. · Zbl 1203.81120 · doi:10.1016/j.nuclphysb.2009.10.009
[22] G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Hints of θ13 > 0 from global neutrino data analysis, Phys. Rev. Lett.101 (2008) 141801 [arXiv:0806.2649] [SPIRES]. · doi:10.1103/PhysRevLett.101.141801
[23] G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, What we (would like to) know about the neutrino mass, arXiv:0809.2936 [SPIRES].
[24] T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys.10 (2008) 113011 [arXiv:0808.2016] [SPIRES]. · doi:10.1088/1367-2630/10/11/113011
[25] M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero θ13, PoS(IDM2008)072 [arXiv:0812.3161] [SPIRES].
[26] MEG collaboration, F. Cei, Lepton flavour violation experiments in LHC era, J. Phys. Conf. Ser.259 (2010) 012010. · doi:10.1088/1742-6596/259/1/012010
[27] MEG collaboration, S. Mihara, MEG experiment at the Paul Scherrer Institute, Nucl. Phys.A 844 (2010) 150c-154c [SPIRES].
[28] MEG collaboration, S. Ritt, Status of the MEG expriment μ → eγ, Nucl. Phys. Proc. Suppl.162 (2006) 279 [SPIRES]. · doi:10.1016/j.nuclphysbps.2006.09.091
[29] MEGA collaboration, M.L. Brooks et al., New Limit for the Family-Number Non-conserving Decay μ+ → eγ+, Phys. Rev. Lett.83 (1999) 1521 [hep-ex/9905013] [SPIRES]. · doi:10.1103/PhysRevLett.83.1521
[30] MEGA collaboration, M. Ahmed et al., Search for the lepton-family-number nonconserving decay μ → e+γ, Phys. Rev.D 65 (2002) 112002 [hep-ex/0111030] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.