×

Nonperturbative improvement of SU(2) lattice gauge theory with adjoint or fundamental flavours. (English) Zbl 1298.81183

Summary: The gauge theory with SU(2) color group and two fermion species, each transforming under the adjoint representation, may appear conformal or almost conformal in the infrared, and is one of the candidate theories for building models for technicolor. Early lattice Monte Carlo studies of this model have used unimproved Wilson fermion formulation, which can be expected to have large lattice cutoff effects. In this paper we present the calculation of the \(O(a)\) improved lattice Wilson-clover action of the theory. The Sheikholeslami-Wohlert coefficient has been determined nonperturbatively, and various boundary improvement terms, needed for the Schrödinger functional formalism, have been calculated in perturbation theory. For comparison, we have also determined the improvement coefficients for SU(2) gauge theory with two fundamental representation fermions. The calculation paves way for more accurate lattice Monte Carlo analyses of the theory in the future.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T25 Quantum field theory on lattices
81T60 Supersymmetric field theories in quantum mechanics
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81T17 Renormalization group methods applied to problems in quantum field theory
65C05 Monte Carlo methods

References:

[1] H. Georgi, Unparticle physics, Phys. Rev. Lett.98 (2007) 221601 [hep-ph/0703260] [SPIRES]. · doi:10.1103/PhysRevLett.98.221601
[2] H. Georgi, Another odd thing about unparticle physics, Phys. Lett.B 650 (2007) 275 [arXiv:0704.2457] [SPIRES].
[3] K. Cheung, W.-Y. Keung and T.-C. Yuan, Collider signals of unparticle physics, Phys. Rev. Lett.99 (2007) 051803 [arXiv:0704.2588] [SPIRES]. · doi:10.1103/PhysRevLett.99.051803
[4] F. Sannino and R. Zwicky, Unparticle & Higgs as composites, Phys. Rev.D 79 (2009) 015016 [arXiv:0810.2686] [SPIRES].
[5] S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev.D 19 (1979) 1277 [SPIRES].
[6] L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev.D 20 (1979) 2619 [SPIRES].
[7] E. Eichten and K.D. Lane, Dynamical breaking of weak interaction symmetries, Phys. Lett.B 90 (1980) 125 [SPIRES].
[8] C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept.381 (2003) 235 [hep-ph/0203079] [SPIRES]. · doi:10.1016/S0370-1573(03)00140-6
[9] F. Sannino, Dynamical stabilization of the Fermi scale: phase diagram of strongly coupled theories for (minimal) walking technicolor and unparticles, arXiv:0804.0182 [SPIRES].
[10] B. Holdom, Raising the sideways scale, Phys. Rev.D 24 (1981) 1441 [SPIRES].
[11] K. Yamawaki, M. Bando and K.-i. Matumoto, Scale invariant technicolor model and a technidilaton, Phys. Rev. Lett.56 (1986) 1335 [SPIRES]. · doi:10.1103/PhysRevLett.56.1335
[12] T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral hierarchies and the flavor changing neutral current problem in technicolor, Phys. Rev. Lett.57 (1986) 957 [SPIRES]. · doi:10.1103/PhysRevLett.57.957
[13] T. Appelquist, A. Ratnaweera, J. Terning and L.C.R. Wijewardhana, The phase structure of an SU(N) gauge theory with Nfflavors, Phys. Rev.D 58 (1998) 105017 [hep-ph/9806472] [SPIRES].
[14] F. Sannino and K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. Rev.D 71 (2005) 051901 [hep-ph/0405209] [SPIRES].
[15] D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: predictions for LHC, Phys. Rev.D 72 (2005) 055001 [hep-ph/0505059] [SPIRES].
[16] D.D. Dietrich and F. Sannino, Walking in the SU(N), Phys. Rev.D 75 (2007) 085018 [hep-ph/0611341] [SPIRES].
[17] S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev.D 76 (2007) 034504 [arXiv:0705.1664] [SPIRES].
[18] A.J. Hietanen, J. Rantaharju, K. Rummukainen and K. Tuominen, Spectrum of SU(2) lattice gauge theory with two adjoint Dirac flavours, JHEP05 (2009) 025 [arXiv:0812.1467] [SPIRES]. · doi:10.1088/1126-6708/2009/05/025
[19] L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: numerical simulations. SU(2) with adjoint fermions, Phys. Rev.D 81 (2010) 094503 [arXiv:0805.2058] [SPIRES].
[20] S. Catterall, J. Giedt, F. Sannino and J. Schneible, Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks, JHEP11 (2008) 009 [arXiv:0807.0792] [SPIRES]. · doi:10.1088/1126-6708/2008/11/009
[21] A.J. Hietanen, K. Rummukainen and K. Tuominen, Evolution of the coupling constant in SU(2) lattice gauge theory with two adjoint fermions, Phys. Rev.D 80 (2009) 094504 [arXiv:0904.0864] [SPIRES].
[22] F. Bursa, L. Del Debbio, L. Keegan, C. Pica and T. Pickup, Mass anomalous dimension in SU(2) with two adjoint fermions, Phys. Rev.D 81 (2010) 014505 [arXiv:0910.4535] [SPIRES].
[23] L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Conformal vs. confining scenario in SU(2) with adjoint fermions, Phys. Rev.D 80 (2009) 074507 [arXiv:0907.3896] [SPIRES].
[24] L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, The infrared dynamics of minimal walking technicolor, Phys. Rev.D 82 (2010) 014510 [arXiv:1004. 206] [SPIRES].
[25] L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Mesonic spectroscopy of minimal walking technicolor, Phys. Rev.D 82 (2010) 014509 [arXiv:1004.3197] [SPIRES].
[26] E. Kerrane et al., Improved spectroscopy of minimal walking technicolor, PoS(LATTICE2010)058 [arXiv:1011.0607] [SPIRES].
[27] Y. Shamir, B. Svetitsky and T. De Grand, Zero of the discrete β-function in SU(3) lattice gauge theory with color sextet fermions, Phys. Rev.D 78 (2008) 031502 [arXiv:0803.1707] [SPIRES].
[28] T. De Grand, Y. Shamir and B. Svetitsky, Phase structure of SU(3) gauge theory with two flavors of symmetric-representation fermions, Phys. Rev.D 79 (2009) 034501 [arXiv:0812.1427] [SPIRES].
[29] T. De Grand, Y. Shamir and B. Svetitsky, Running coupling and mass anomalous dimension of SU(3) gauge theory with two flavors of symmetric-representation fermions, Phys. Rev.D 82 (2010) 054503 [arXiv:1006.0707] [SPIRES].
[30] Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, Chiral properties of SU(3) sextet fermions, JHEP11 (2009) 103 [arXiv:0908.2466] [SPIRES]. · doi:10.1088/1126-6708/2009/11/103
[31] J.B. Kogut and D.K. Sinclair, Thermodynamics of lattice QCD with 2 flavours of colour-sextet quarks: a model of walking/conformal technicolor, Phys. Rev.D 81 (2010) 114507 [arXiv:1002.2988] [SPIRES].
[32] P.H. Damgaard, U.M. Heller, A. Krasnitz and P. Olesen, On lattice QCD with many flavors, Phys. Lett.B 400 (1997) 169 [hep-lat/9701008] [SPIRES].
[33] T. Appelquist, G.T. Fleming and E.T. Neil, Lattice study of the conformal window in QCD-like theories, Phys. Rev. Lett.100 (2008) 171607 [arXiv:0712.0609] [SPIRES]. · doi:10.1103/PhysRevLett.100.171607
[34] T. Appelquist, G.T. Fleming and E.T. Neil, Lattice study of conformal behavior in SU(3) Yang-Mills theories, Phys. Rev.D 79 (2009) 076010 [arXiv:0901.3766] [SPIRES].
[35] Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, Nearly conformal gauge theories in finite volume, Phys. Lett.B 681 (2009) 353 [arXiv:0907.4562] [SPIRES].
[36] A. Deuzeman, M.P. Lombardo and E. Pallante, The physics of eight flavours, Phys. Lett.B 670 (2008) 41 [arXiv:0804.2905] [SPIRES].
[37] A. Deuzeman, M.P. Lombardo and E. Pallante, Evidence for a conformal phase in SU(N) gauge theories, Phys. Rev.D 82 (2010) 074503 [arXiv:0904.4662] [SPIRES].
[38] E. Itou et al., Search for the IR fixed point in the twisted Polyakov loop scheme (II), PoS(LATTICE2010)054 [arXiv:1011.0516] [SPIRES].
[39] X.-Y. Jin and R.D. Mawhinney, Evidence for a first order, finite temperature phase transition in 8 flavor QCD, PoS(LATTICE2010)055 [arXiv:1011.1511] [SPIRES].
[40] M. Hayakawa et al., Running coupling constant of ten-flavor QCD with the Schródinger functional method, Phys. Rev.D 83 (2011) 074509 [arXiv:1011.2577] [SPIRES].
[41] A. Hasenfratz, Conformal or Walking? Monte Carlo renormalization group studies of SU(3) gauge models with fundamental fermions, Phys. Rev.D 82 (2010) 014506 [arXiv:1004.1004] [SPIRES].
[42] A. Hasenfratz, Investigating the critical properties of beyond-QCD theories using Monte Carlo Renormalization Group matching, Phys. Rev.D 80 (2009) 034505 [arXiv:0907.0919] [SPIRES].
[43] F. Bursa, L. Del Debbio, L. Keegan, C. Pica and T. Pickup, Mass anomalous dimension and running of the coupling in SU(2) with six fundamental fermions, PoS(LATTICE2010)070 [arXiv:1010.0901] [SPIRES].
[44] H. Ohki et al., Study of the scaling properties in SU(2) gauge theory with eight flavors, PoS(LATTICE2010)066 [arXiv:1011.0373] [SPIRES].
[45] M. Lüscher, R. Sommer, U. Wolff and P. Weisz, Computation of the running coupling in the SU(2) Yang-Mills theory, Nucl. Phys.B 389 (1993) 247 [hep-lat/9207010] [SPIRES]. · doi:10.1016/0550-3213(93)90292-W
[46] S. Sint, One loop renormalization of the QCD Schrödinger functional, Nucl. Phys.B 451 (1995) 416 [hep-lat/9504005] [SPIRES]. · doi:10.1016/0550-3213(95)00352-S
[47] S. Sint and R. Sommer, The running coupling from the QCD Schrödinger functional: a one loop analysis, Nucl. Phys.B 465 (1996) 71 [hep-lat/9508012] [SPIRES]. · doi:10.1016/0550-3213(96)00020-X
[48] M. Lüscher, S. Sint, R. Sommer and P. Weisz, Chiral symmetry and O(a) improvement in lattice QCD, Nucl. Phys.B 478 (1996) 365 [hep-lat/9605038] [SPIRES]. · doi:10.1016/0550-3213(96)00378-1
[49] M. Lüscher and P. Weisz, O(a) improvement of the axial current in lattice QCD to one-loop order of perturbation theory, Nucl. Phys.B 479 (1996) 429 [hep-lat/9606016] [SPIRES]. · doi:10.1016/0550-3213(96)00448-8
[50] M. Lüscher, S. Sint, R. Sommer, P. Weisz and U. Wolff, Non-perturbative O(a) improvement of lattice QCD, Nucl. Phys.B 491 (1997) 323 [hep-lat/9609035] [SPIRES]. · doi:10.1016/S0550-3213(97)00080-1
[51] K. Jansen, Lattice QCD: a critical status report, PoS(LATTICE2008)010 [arXiv:0810.5634] [SPIRES].
[52] T. Karavirta, K. Tuominen, A.-M. Mykkanen, J. Rantaharju and K. Rummukainen, Perturbative improvement of SU(2) gauge theory with two Wilson fermions in the adjoint representation, PoS(LATTICE2010)056 [arXiv:1011.2057] [SPIRES]. · Zbl 1298.81183
[53] T. Karavirta, K. Tuominen, A. Mykkanen, J. Rantaharju and K. Rummukainen, Non-perturbatively improved clover action for SU(2) gauge + fundamental and adjoint representation fermions, PoS(LATTICE2010)064 [arXiv:1011.1781] [SPIRES]. · Zbl 1298.81183
[54] B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with Wilson fermions, Nucl. Phys.B 259 (1985) 572 [SPIRES]. · doi:10.1016/0550-3213(85)90002-1
[55] Y. Shamir, B. Svetitsky and E. Yurkovsky, Improvement via hypercubic smearing in triplet and sextet QCD, arXiv:1012.2819 [SPIRES].
[56] M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, The Schrödinger functional: a renormalizable probe for non abelian gauge theories, Nucl. Phys.B 384 (1992) 168 [hep-lat/9207009] [SPIRES]. · doi:10.1016/0550-3213(92)90466-O
[57] M. Lüscher, R. Sommer, P. Weisz and U. Wolff, A precise determination of the running coupling in the SU(3) Yang-Mills theory, Nucl. Phys.B 413 (1994) 481 [hep-lat/9309005] [SPIRES]. · doi:10.1016/0550-3213(94)90629-7
[58] T. De Grand, Y. Shamir and B. Svetitsky, Infrared fixed point in SU(2) gauge theory with adjoint fermions, Phys. Rev.D 83 (2011) 074507 [arXiv:1102.2843] [SPIRES].
[59] http://physics.utah.edu/∼detar/milc.html.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.