×

Should there be a spin-rotation coupling for a Dirac particle? (English) Zbl 1298.81063

Summary: It was argued by Mashhoon that a spin-rotation coupling term should add to the Hamiltonian operator in a rotating frame, as compared with the one in an inertial frame. For a Dirac particle, the Hamiltonian and energy operators H and E in a given reference frame were recently proved to depend on the tetrad field. We argue that this non-uniqueness of H and E really is a physical problem. We show that a tetrad field contains two informations about local rotation, which usually do not coincide. We compute the energy operator in the inertial and the rotating frame, using three different tetrad fields. We find that Mashhoon’s term is there if the spatial triad rotates as does the reference frame – but then it is also there in the energy operator for the inertial frame. In fact, if one uses the same given tetrad field, the Dirac Hamiltonian operators in two reference frames in relative rotation differ only by the angular momentum term. If the Mashhoon effect is to exist for a Dirac particle, the tetrad field must be selected in a specific way for each reference frame.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

References:

[1] Werner, S.A., Staudenmann, J.L., Colella, R.: Effect of Earth’s rotation on the quantum mechanical phase of the neutron. Phys. Rev. Lett. 42, 1103-1106 (1979) · doi:10.1103/PhysRevLett.42.1103
[2] Arminjon, M.: Main effects of the Earth’s rotation on the stationary states of ultra-cold neutrons. Phys. Lett. A 372, 2196-2200 (2008). arXiv:0708.3204v2 [quant-ph] · Zbl 1220.81108 · doi:10.1016/j.physleta.2007.11.020
[3] Kuroiwa, J., Kasai, M., Futamase, T.: A treatment of general relativistic effects in quantum interference. Phys. Lett. A 182, 330-334 (1993) · doi:10.1016/0375-9601(93)90403-M
[4] Morozova, V.S., Ahmedov, B.J.: Quantum interference effects in slowly rotating NUT space-time. Int. J. Mod. Phys. D 18, 107-118 (2009). arXiv:0804.2786v2 [gr-qc] · Zbl 1163.83342 · doi:10.1142/S0218271809014352
[5] Mashhoon, B.: On the coupling of intrinsic spin with the rotation of the earth. Phys. Lett. A 198, 9-13 (1995) · doi:10.1016/0375-9601(95)00010-Z
[6] Mashhoon, B.: Neutron interferometry in a rotating frame of reference. Phys. Rev. Lett. 61, 2639-2642 (1988) · doi:10.1103/PhysRevLett.61.2639
[7] Hehl, F.W., Ni, W.T.: Inertial effects of a Dirac particle. Phys. Rev. D 42, 2045-2048 (1990) · doi:10.1103/PhysRevD.42.2045
[8] Cai, Y.Q., Papini, G.: Neutrino helicity flip from gravity-spin coupling. Phys. Rev. Lett. 66, 1259-1262 (1991) · doi:10.1103/PhysRevLett.66.1259
[9] Brill, D.R., Wheeler, J.A.: Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465-479 (1957). Erratum: Rev. Mod. Phys. 33, 623-624 (1961) · Zbl 0078.43503 · doi:10.1103/RevModPhys.29.465
[10] Chapman, T.C., Leiter, D.J.: On the generally covariant Dirac equation. Am. J. Phys. 44(9), 858-862 (1976) · doi:10.1119/1.10256
[11] Isham, C.J.: Spinor fields in four dimensional space-time. Proc. R. Soc. Lond. A 364, 591-599 (1978) · Zbl 0396.53031 · doi:10.1098/rspa.1978.0219
[12] Ryder, L.: Spin-rotation coupling and Fermi-Walker transport. Gen. Relativ. Gravit. 40, 1111-1115 (2008) · Zbl 1181.83032 · doi:10.1007/s10714-008-0614-8
[13] Arminjon, M., Reifler, F.: A non-uniqueness problem of the Dirac theory in a curved spacetime. Ann. Phys. (Berlin) 523, 531-551 (2011). arXiv:0905.3686 [gr-qc] · Zbl 1223.81110 · doi:10.1002/andp.201100060
[14] Arminjon, M., Reifler, F.: Four-vector vs. four-scalar representation of the Dirac wave function. Int. J. Geom. Methods Mod. Phys. 9(4), 1250026 (2012). arXiv:1012.2327v2 [gr-qc] · Zbl 1271.53049 · doi:10.1142/S0219887812500260
[15] Leclerc, M.: Hermitian Dirac Hamiltonian in the time-dependent gravitational field. Class. Quantum Gravity 23, 4013-4020 (2006). arXiv:gr-qc/0511060v3 · Zbl 1096.83003 · doi:10.1088/0264-9381/23/12/001
[16] Arminjon, M.: A simpler solution of the non-uniqueness problem of the Dirac theory. Int. J. Geom. Methods Mod. Phys. 10(7), 1350027 (2013). arXiv:1205.3386v4 [math-ph] · Zbl 1272.53038 · doi:10.1142/S0219887813500278
[17] Gorbatenko, M.V., Neznamov, V.P.: Absence of the non-uniqueness problem of the Dirac theory in a curved spacetime. Spin-rotation coupling is not physically relevant. arXiv:1301.7599v2 [gr-qc] · Zbl 1316.81041
[18] Arminjon, M.: On the non-uniqueness problem of the covariant Dirac theory and the spin-rotation coupling. Int. J. Theor. Phys. 52(11), 4032-4044 (2013). arXiv:1302.5584v2 [gr-qc] · Zbl 1282.81068 · doi:10.1007/s10773-013-1717-x
[19] Parker, L.: One-electron atom as a probe of spacetime curvature. Phys. Rev. D 22, 1922-1934 (1980) · doi:10.1103/PhysRevD.22.1922
[20] Huang, X., Parker, L.: Hermiticity of the Dirac Hamiltonian in curved spacetime. Phys. Rev. D 79, 024020 (2009). arXiv:0811.2296 [gr-qc] · Zbl 1222.81222 · doi:10.1103/PhysRevD.79.024020
[21] Arminjon, M.: A solution of the non-uniqueness problem of the Dirac Hamiltonian and energy operators. Ann. Phys. (Berlin) 523, 1008-1028 (2011). arXiv:1107.4556v2 [gr-qc] · Zbl 1244.81047 · doi:10.1002/andp.201100166
[22] Arminjon, M., Reifler, F.: Dirac equation: Representation independence and tensor transformation. Braz. J. Phys. 38, 248-258 (2008). arXiv:0707.1829 [quant-ph] · doi:10.1590/S0103-97332008000200007
[23] Cattaneo, C.: General relativity: relative standard mass, momentum, energy and gravitational field in a general system of reference. Nuovo Cimento 10, 318-337 (1958) · Zbl 0083.42801 · doi:10.1007/BF02732487
[24] von Weyssenhof, J.: Metrisches Feld und Gravitationsfeld. Bull. Acad. Polon. Sci., Sect. A 252 (1937) (Quoted by Cattaneo [23]) · JFM 63.0702.04
[25] Arminjon, M., Reifler, F.: Basic quantum mechanics for three Dirac equations in a curved spacetime. Braz. J. Phys. 40, 242-255 (2010). arXiv:0807.0570 [gr-qc] · doi:10.1590/S0103-97332010000200020
[26] Chern, S.S., Chen, W.H., Lam, K.S.: Lectures on Differential Geometry, pp. 113-121. World Scientific, Singapore (1999) · Zbl 0940.53001 · doi:10.1142/3812
[27] Pauli, W.: Contributions mathématiques à la théorie des matrices de Dirac. Ann. Inst. Henri Poincaré 6, 109-136 (1936) · Zbl 0015.19403
[28] Mashhoon, B., Muench, U.: Length measurement in accelerated systems. Ann. Phys. (Berlin) 11, 532-547 (2002). arXiv:gr-qc/0206082v1 · Zbl 1014.83001 · doi:10.1002/1521-3889(200208)11:7<532::AID-ANDP532>3.0.CO;2-3
[29] Maluf, J.W., Faria, F.F., Ulhoa, S.C.: On reference frames in spacetime and gravitational energy in freely falling frames. Class. Quantum Gravity 24, 2743-2754 (2007). arXiv:0704.0986v1 [gr-qc] · Zbl 1118.83329 · doi:10.1088/0264-9381/24/10/017
[30] Arminjon, M.: Space isotropy and weak equivalence principle in a scalar theory of gravity. Braz. J. Phys. 36, 177-189 (2006). arXiv:gr-qc/0412085 · doi:10.1590/S0103-97332006000200010
[31] Arminjon, M., Reifler, F.: General reference frames and their associated space manifolds. Int. J. Geom. Methods Mod. Phys. 8(1), 155-165 (2011). arXiv:1003.3521v2 [gr-qc] · Zbl 1213.83024 · doi:10.1142/S0219887811005051
[32] Jantzen, R.T., Carini, P., Bini, D.: The many faces of gravitoelectromagnetism. Ann. Phys. (N.Y.) 215, 1-50 (1992). arXiv:gr-qc/0106043 · doi:10.1016/0003-4916(92)90297-Y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.