×

Asymmetric quantum information splitting of an arbitrary \(N\)-qubit state via GHZ-like state and Bell states. (English) Zbl 1298.81037

Summary: In this manuscript, a novel and economical scheme for asymmetric quantum information splitting (AQIS) of an arbitrary \(N\)-qubit state is investigated. Instead of multi-qubit entangled states, the maximally entangled states, which are made up of a three-qubit GHZ-like entangled state and \((N-1)\) sets of Bell states, are used as quantum information carrier. It is shown that the proposed AQIS scheme can be faithfully realized by performing appropriate Bell state measurements (BSMs), single qubit measurements (SMs) and local unitary operations (LUOs), rather than multi-qubit entanglement or multi-particle joint measurements, which make it more convenient and feasible in a practical application than some previous schemes. Furthermore, its intrinsic efficiency for qubits approaches 100%, and the total efficiency really approaches the maximal value, which is higher than those of some previous symmetric quantum information splitting (QIS) schemes. Finally, the proposed scheme can be proven information-theoretically secure from the views of participant attack and outside attack in detail.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations

References:

[1] Bennett, C. H.; Brassard, G., Quantum cryptography: public-key distribution and coin tossing, 175-179 (1984), New York
[2] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2002) · Zbl 1049.81015
[3] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[4] Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829-1834 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[5] Shamir, A.: How to share a secret. Commun. ACM 22, 612-613 (1979) · Zbl 0414.94021 · doi:10.1145/359168.359176
[6] Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004) · doi:10.1103/PhysRevA.69.052307
[7] Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret? Phys. Rev. Lett. 83, 648-651 (1999) · doi:10.1103/PhysRevLett.83.648
[8] Chen, X.B., Xu, G., Su, Y., Yang, Y.X.: Robust variations of secret sharing through noisy quantum channel. Quantum Inf. Comput. 14, 0589 (2014)
[9] Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365-380 (2013) · Zbl 1263.81130 · doi:10.1007/s11128-012-0379-6
[10] Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001) · Zbl 1035.81507 · doi:10.1103/PhysRevA.63.042301
[11] Wang, T.Y., Wen, Q.Y., Chen, X.B.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130-6134 (2008) · doi:10.1016/j.optcom.2008.09.026
[12] Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005) · doi:10.1103/PhysRevA.72.044301
[13] Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008) · doi:10.1103/PhysRevA.77.032321
[14] Yang, K., Huang, L.S., Yang, W., Quantum, S.F.: Teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516-521 (2009) · Zbl 1162.81358 · doi:10.1007/s10773-008-9827-6
[15] Zhang, Q.Y., Zhan, Y.B., Zhang, L.L., Ma, P.C.: Schemes for splitting quantum information via tripartite entangled states. Int. J. Theor. Phys. 48, 3331-3338 (2009) · Zbl 1186.81031 · doi:10.1007/s10773-009-0135-6
[16] Lin, S., Guo, G.D.: Cryptanalysis the security of enhanced multiparty quantum secret sharing of classical messages by using entanglement swapping. Int. J. Theor. Phys. 52, 3238-3243 (2013) · Zbl 1276.81038 · doi:10.1007/s10773-013-1619-y
[17] Liu, D., Zong, Z.C., Ma, W.: High-capacity quantum secret sharing with hyperdense coding assisted by hyperentangled photon pairs. Int. J. Theor. Phys. 52, 2245-2254 (2013) · doi:10.1007/s10773-013-1500-z
[18] Xiao, H.L., Gao, J.L.: Multi-party d-level quantum secret sharing scheme. Int. J. Theor. Phys. 52, 2075-2082 (2013) · doi:10.1007/s10773-012-1481-3
[19] Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways (2000). arXiv:0000.5115v2 [quant-ph]
[20] Rieffel, E.G., Polak, W.: An introduction to quantum computing for non-physicists. ACM Comput. Surv. 32, 300-335 (2000) · doi:10.1145/367701.367709
[21] Englert, B.G., Walther, H.: Preparing a GHZ state, or an EPR state, with the one-atom maser. Opt. Commun. 179, 283-288 (2000) · doi:10.1016/S0030-4018(99)00728-2
[22] Muralidharan, S., Karumanchi, S., Narayanaswamy, S., Srikanth, R., Panigrahi, P.K.: In how many ways can quantum information be split (2009). arXiv:0907.3532v2 [quant-ph]
[23] Kang, S.Y., Chen, X.B., Yang, Y.X.: Quantum teleportation and state sharing via a generalized seven-qubit brown state. Int. J. Theor. Phys. 52, 3413-3431 (2013) · Zbl 1274.81024 · doi:10.1007/s10773-013-1643-y
[24] Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000) · doi:10.1103/PhysRevA.61.052306
[25] Stinespring, W., Positive, F.: Functions on C∗-algebras. Proc. Am. Math. Soc. 6, 211-216 (1955) · Zbl 0064.36703
[26] Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661-663 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[27] Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. (2010). doi:10.1038/nphys1734-1745 · doi:10.1038/nphys1734-1745
[28] Coles, P.J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210405 (2012) · doi:10.1103/PhysRevLett.108.210405
[29] Calderbank, A.P., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098-1105 (1996) · doi:10.1103/PhysRevA.54.1098
[30] Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793-797 (1996) · Zbl 0944.81505 · doi:10.1103/PhysRevLett.77.793
[31] Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824-3851 (1996) · Zbl 1371.81041 · doi:10.1103/PhysRevA.54.3824
[32] Cao, C., Wang, C., He, L.Y., Zhang, R.: Polarization-entanglement purification for ideal sources using weak Cross-Kerr nonlinearity. Int. J. Theor. Phys. 52, 1265-1273 (2013) · Zbl 1268.81020 · doi:10.1007/s10773-012-1441-y
[33] Waks, E., Zeevi, A., Yamamoto, Y.: Security of quantum key distribution with entangled photons against individual attacks. Phys. Rev. A 65, 052310 (2002) · doi:10.1103/PhysRevA.65.052310
[34] Zhu, C.H., Quan, D.X., Zhang, F., Improving, P.C.X.: Key rate of optical fiber quantum key distribution system based on channel tomography. Int. J. Theor. Phys. 52, 596-603 (2013) · Zbl 1264.81164 · doi:10.1007/s10773-012-1365-6
[35] Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635-5638 (2000) · doi:10.1103/PhysRevLett.85.5635
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.