×

A study of regularization techniques of nondifferentiable optimization in view of application to hemivariational inequalities. (English) Zbl 1298.74083

Summary: This paper presents a study of regularization techniques of nondifferentiable optimization with focus to the application to a special class of hemivariational inequalities. We establish some convergence results for the regularization method of hemivariational inequalities. As a model example we consider the delamination problem for laminated composite structures and provide numerical experiments, which underline our regularization theory.

MSC:

74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
74M15 Contact in solid mechanics
74R99 Fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984) · Zbl 0536.65054 · doi:10.1007/978-3-662-12613-4
[2] Glowinski, R., Lions, J.L., Trémoliéres, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981) · Zbl 0463.65046
[3] Huang, H., Han, W., Zhou, J.: The regularization method for an obstacle problem. Numer. Math. 69, 155-166 (1994) · Zbl 0817.65050 · doi:10.1007/s002110050086
[4] Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988) · Zbl 0685.73002 · doi:10.1137/1.9781611970845
[5] Reddy, B.D., Griffin, T.B.: Variational principles and convergence of finite element approximations of a holonomic elastic-plastic problem. Numer. Math. 52, 101-117 (1988) · Zbl 0618.73034 · doi:10.1007/BF01401024
[6] Sofonea, M., Matei, A.: Variational Inequalities with Applications. Springer, New York (2009) · Zbl 1195.49002
[7] Panagiotopoulos, P.D.: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer, Berlin (1993) · Zbl 0826.73002 · doi:10.1007/978-3-642-51677-1
[8] Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Application. Convex and Nonconvex Energy Functions. Springer, Birkhäuser, Boston (1998)
[9] Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities: Theory, Methods and Applications, vol. I: Unilateral Analysis and Unilateral Mechanics, vol. II: Unilateral Problems. Kluwer, Dordrecht (2003) · Zbl 1259.49002 · doi:10.1007/978-1-4419-8610-8
[10] Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Springer, Berlin (2007) · Zbl 1109.35004 · doi:10.1007/978-0-387-46252-3
[11] Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Springer, Berlin (2013) · Zbl 1262.49001 · doi:10.1007/978-1-4614-4232-5
[12] Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995) · Zbl 0968.49008
[13] Migórski, S.: Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction. Appl. Anal. 84, 669-699 (2005) · Zbl 1081.74036 · doi:10.1080/00036810500048129
[14] Migórski, S.: Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discret. Cont. Dyn. Syst. 6, 1339-1356 (2006) · Zbl 1109.74039
[15] Migórski, S., Ochal, A.: A unified approach to dynamic contact problems in viscoelasticity. J. Elast. 83, 247-275 (2006) · Zbl 1138.74375 · doi:10.1007/s10659-005-9034-0
[16] Migórski, S., Ochal, A., Sofonea, M.: Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact. Math. Models Methods Appl. Sci. 18, 271-290 (2008) · Zbl 1159.47038 · doi:10.1142/S021820250800267X
[17] Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Methods for Hemivariational Inequalities. Kluwer, Dordrecht (1999) · Zbl 0949.65069 · doi:10.1007/978-1-4757-5233-5
[18] Ovcharova, N.: Regularization methods and finite element approximation of hemivariational inequalities with applications to nonmonotone contact problems. PhD Thesis, Universität der Bundeswehr München, Cuvillier Verlag, Göttingen (2012) · Zbl 1032.49017
[19] Baniotopoulos, C.C., Haslinger, J., Morávková, Z.: Contact problems with nonmonotone friction: discretization and numerical realization. Comput. Mech. 40, 157-165 (2007) · Zbl 1163.74038 · doi:10.1007/s00466-006-0092-3
[20] Baniotopoulos, C.C., Haslinger, J., Morávková, Z.: Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities. Appl. Math. 50(1), 1-25 (2005) · Zbl 1099.74021 · doi:10.1007/s10492-005-0001-7
[21] Hintermüller, M., Kovtunenko, V.A., Kunisch, K.: Obstacle problems with cohesion: a hemivariational inequality approach and its efficient numerical solution. SIAM J. Optim. 21(2), 491-516 (2011) · Zbl 1228.49012 · doi:10.1137/10078299
[22] Kovtunenko, V.A.: A hemivariational inequality in crack problems. Optimization 60(8-9), 1071-1089 (2011) · Zbl 1242.49016
[23] Czepiel, J.: Proximal bundle method for a simplifed unilateral adhesion contact problem of elasticity. Schedae Inform. 20, 115-136 (2011)
[24] Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Program. 134, 71-99 (2012) · Zbl 1266.90145 · doi:10.1007/s10107-012-0569-0
[25] Chen, C., Mangasarian, O.L.: A class of smoothing functions for nonlinear and mixed complementarity problems. Comput. Optim. Appl. 5, 97-138 (1996) · Zbl 0859.90112 · doi:10.1007/BF00249052
[26] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I, II. Springer, Berlin (2003) · Zbl 1062.90002
[27] Qi, L., Sun, D.: Smoothing functions and a smoothing Newton method for complementarity and variational inequality problems. J. Optim. Theory Appl. 113(1), 121-147 (2002) · Zbl 1032.49017 · doi:10.1023/A:1014861331301
[28] Sun, D., Qi, L.: Solving variational inequality problems via smoothing-nonsmooth reformulations. J. Comput. Appl. Math. 129, 37-62 (2001) · Zbl 0987.65059 · doi:10.1016/S0377-0427(00)00541-0
[29] Zang, I.: A smoothing-out technique for min-max optimization. Math. Program. 19, 61-77 (1980) · Zbl 0468.90064 · doi:10.1007/BF01581628
[30] Chen, C., Mangasarian, O.L.: Smoothing methods for convex inequalities and linear complementarity problems. Math. Program. 71, 51-69 (1995) · Zbl 0855.90124 · doi:10.1007/BF01592244
[31] Bertsekas, D.P.: Nondifferentiable optimization via approximation. Math. Program. Study 3, 1-25 (1975) · Zbl 0383.49025 · doi:10.1007/BFb0120696
[32] Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) · Zbl 0582.49001
[33] Chen, X., Qi, L., Sun, D.: Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math. Comp. 67, 519-540 (1998) · Zbl 0894.90143 · doi:10.1090/S0025-5718-98-00932-6
[34] Pinar, M.Ç., Zenios, S.A.: On smoothing exact penalty functions for convex constrained optimization. SIAM J. Optim. 4(3), 486-511 (1994) · Zbl 0819.90072 · doi:10.1137/0804027
[35] Gwinner, J.: Nichtlineare Variationsungleichungen mit Anwendungen. PhD Thesis, Universität Mannheim (1978) · Zbl 0393.49001
[36] Zeidler, E.: Nonlinear Functional Analysis and its Applications, II/B. Springer, Berlin (1990) · Zbl 0684.47029 · doi:10.1007/978-1-4612-0981-2
[37] Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations. Springer, Berlin (2004) · Zbl 1072.35001
[38] Gwinner, J.: hp-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics. J. Comput. Appl. Math. 254, 175-184 (2013) · Zbl 1290.74041 · doi:10.1016/j.cam.2013.03.013
[39] Miettinen, M., Haslinger, J.: Approximation of optimal control problems of hemivariational inequalities. Numer. Funct. Anal. Optim. 13(1-2), 43-68 (1992) · Zbl 0765.49007 · doi:10.1080/01630569208816460
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.