×

A complexity dichotomy for partition functions with mixed signs. (English) Zbl 1298.68099

Authors’ abstract: “Partition functions, also known as homomorphism functions, form a rich family of graph invariants that contain combinatorial invariants such as the number of \(k\)-colorings or the number of independent sets of a graph and also the partition functions of certain “spin glass” models of statistical physics such as the Ising model. Building on earlier work by M. Dyer and C. Greenhill [Random Struct. Algorithms 17, No. 3–4, 260–289 (2000; Zbl 0965.68073)] and A. Bulatov and M. Grohe [Theor. Comput. Sci. 348, No. 2–3, 148–186 (2005; Zbl 1081.68030)], we completely classify the computational complexity of partition functions. Our main result is a dichotomy theorem stating that every partition function is either computable in polynomial time or #P-complete. Partition functions are described by symmetric matrices with real entries, and we prove that it is decidable in polynomial time in terms of the matrix whether a given partition function is in polynomial time or #P-complete. While in general it is very complicated to give an explicit algebraic or combinatorial description of the tractable cases, for partition functions described by Hadamard matrices (these turn out to be central in our proofs) we obtain a simple algebraic tractability criterion, which says that the tractable cases are those “representable” by a quadratic polynomial over the field \(\mathbb{F}_2\).”

MSC:

68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68Q25 Analysis of algorithms and problem complexity
68R05 Combinatorics in computer science
68R10 Graph theory (including graph drawing) in computer science
05C31 Graph polynomials