×

Chisholm-Caianiello-Fubini identities for \(S=1\) Barut-Muzinich-Williams matrices. (English) Zbl 1297.81095

Summary: The formulae of the relativistic products are found for the \(S=1\) Barut-Muzinich-Williams matrices. They are analogs of the wellknown Chisholm-Caianiello-Fubini identities. The obtained results can be useful in the higher-order calculations of high-energy processes with \(S=1\) particles in the framework of the \(2(2S+1)\) Weinberg formalism, which recently attracted attention again.

MSC:

81R05 Finite-dimensional groups and algebras motivated by physics and their representations
15A24 Matrix equations and identities
22E43 Structure and representation of the Lorentz group

References:

[1] Weinberg S., Phys. Rev. 133, B1318 (1964)
[2] L. H. Ryder, Quantum Field Theory. (Cambridge Univ. Press, 1985). · Zbl 0555.46038
[3] W. Greiner, Relativistic Quantum Mechanics. (Springer-Verlag, Berlin-Heidelberg, 1990). · Zbl 0718.35078
[4] V. V. Dvoeglazov and N. B. Skachkov, Yad. Fiz. 48, 1770 [English translation: Sov. J. Nucl. Phys., 1065] (1988).
[5] V. V. Dvoeglazov, JINR Communications R2-87-882 (1987).
[6] V. V. Dvoeglazov and S. V. Khudyakov, Hadronic J. 21 (1998), 507. · Zbl 1055.81646
[7] V. V. Dvoeglazov , Rev. Mex. Fis. Suppl. 40 (1994), 352, hep-th/9401043.
[8] D. V. Ahluwalia, M. B. Johnson and T. Goldman, Phys. Lett. B316 (1993), 102.
[9] V. V. Dvoeglazov, Int. J. Theor. Phys. 37 (1998), 1915. · Zbl 0929.35120
[10] V. V. Dvoeglazov, Int. J. Mod. Phys. B20 (2006), 1317.
[11] V. V. Dvoeglazov, J. Phys. CS91 (2007), 012009.
[12] V. V. Dvoeglazov, Int. J. Mod. Phys. CS03 (2011), 121.
[13] I. M. Gelfand and M. L. Tsetlin, ZhETF 31 (1956), 1107.
[14] G. A. Sokolik, ZhETF 33 (1957), 1515.
[15] E. P. Wigner, in Group Theoretical Concepts and Methods in Elementary Particle Physics - Lectures of the Istanbul Summer School of Theoretical Physics, 1962. Ed. by F. Gürsey (Gordon and Breach, New York-London-Paris, 1964).
[16] Z. K. Silagadze, Yad. Fiz. 55, 707 [English translation: Sov. J. Nucl. Phys. (1992), 392].
[17] V. N. Bolotov et al., Phys. Lett. B243 (1990), 308.
[18] D. N. Castaño, Dark Matter Constrains from High Energy Astrophysical Observations. Ph. D. Thesis (2012), http://eprints.ucm.es/15300/1/T33772.pdf.
[19] V. I. Ogievetskii and I. V. Polubarinov, Sov. J. Nucl. Phys. 4 (1967), 156.
[20] K. Hayashi, Phys. Lett. B44 (1973), 497.
[21] M. Kalb and P. Ramond, Phys. Rev. D9 (1974), 2273.
[22] A. Barut, I. Muzinich and D. N. Williams, Phys. Rev. 130 (1963), 442. · Zbl 0125.21804
[23] A. Sankaranarayanan and R. H. Good, Nuovo Cimento36 (1965), 1303. · Zbl 0126.44806
[24] D. Shay and R. H. Good, Jr., Phys. Rev. 179 (1969), 1410.
[25] R. H. Tucker and C. L. Hammer, Phys. Rev. D3 (1971), 2448.
[26] J. S. R. Chisholm, Proc. Cambridge Phil. Soc. 48 (1952), 300. · Zbl 0046.21511
[27] E. R. Caianiello and S. Fubini, Nuovo Cimento9 (1952), 1218. · Zbl 0049.27406
[28] R. H. Good, Jr., Rev. Mod. Phys. 27 (1955), 187. · Zbl 0066.22306
[29] J. S. R. Chisholm, Nuovo Cimento30 (1963), 426. · Zbl 0113.21502
[30] J. Kahane, J. Math. Phys. 9 (1968), 1732.
[31] J. S. R. Chisholm, Comp. Phys. Comm. 4 (1972), 205.
[32] D. A. Varshalovich et al., Quantum Theory of Angular Momentum. (World Scientific, Singapore, 1988).
[33] D. L. Weaver, Am. J. Phys. 46 (1978), 721.
[34] D. L. Weaver, J. Math. Phys. 19 (1978), 88.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.