×

Simulation of plant cell shrinkage during drying – a SPH-DEM approach. (English) Zbl 1297.76135

Summary: Plant based dried food products are popular commodities in global market where much research is focused to improve the products and processing techniques. In this regard, numerical modeling is highly applicable and in this work, a coupled meshfree particle-based two-dimensional (2-D) model was developed to simulate microscale deformations of plant cells during drying. Smoothed Particle Hydrodynamics (SPH) was used to model the viscous cell protoplasm (cell fluid) by approximating it to an incompressible Newtonian fluid. The visco-elastic characteristic of the cell wall was approximated to a Neo-Hookean solid material augmented with a viscous term and modeled with a Discrete Element Method (DEM). Compared to a previous work [the authors, “A coupled SPH-DEM model for micro-scale structural deformations of plant cells during drying”, Appl. Math. Modelling 38, No. 15–16, 3781–3801 (2014; doi:10.1016/j.apm.2013.12.004)], this study proposes three model improvements: linearly decreasing positive cell turgor pressure during drying, cell wall contraction forces and cell wall drying. The improvements made the model more comparable with experimental findings on dried cell morphology and geometric properties such as cell area, diameter, perimeter, roundness, elongation and compactness. This single cell model could be used as a building block for advanced tissue models which are highly applicable for product and process optimizations in Food Engineering.

MSC:

76M28 Particle methods and lattice-gas methods

Software:

OVITO
Full Text: DOI

References:

[1] Jangam, S. V., An overview of recent developments and some R&D challenges related to drying of foods, Dry Technol, 29, 12, 1343-1357 (2011)
[2] Grabowski, S.; Marcotte, M.; Ramaswamy, H. S., Drying of fruits, vegetables, and spices, (Chakraverty, A.; Mujumdar, A. S.; Raghavan, G. S.V.; Rawaswamy, H., Handbook of postharvest technology : cereals, fruits, vegetables, tea, and spices (2003), Marcel Dekker: Marcel Dekker New York), 653-695
[3] Mayor, L.; Silva, M. A.; Sereno, A. M., Microstructural changes during drying of apple slices, Dry Technol, 23, 9-11, 2261-2276 (2005)
[4] Lozano, J. E.; Rotstein, E.; Urbicain, M. J., Total porosity and open-pore porosity in the drying of fruits, J Food Sci, 45, 5, 1403-1407 (1980)
[5] Ramos, I. N.; Silva, C. L.M.; Sereno, A. M.; Aguilera, J. M., Quantification of microstructural changes during first stage air drying of grape tissue, J Food Eng, 62, 2, 159-164 (2004)
[6] Hills, B. P.; Remigereau, B., NMR studies of changes in subcellular water compartmentation in parenchyma apple tissue during drying and freezing, Int J Food Sci Technol, 32, 1, 51-61 (1997)
[7] Lee, C. Y.; Salunkhe, D. K.; Nury, F. S., Some chemical and histological changes in dehydrated apple, J Sci Food Agric, 18, 3, 89-93 (1967)
[8] Lewicki, P. P.; Drzewucka, J., Effect of drying on tissue structure of selected fruits and vegetables, (Mujumdar, A. S.; akritidis, C. B.; Marinos-Kouris, D.; Saravacos, G. D., Proceedings of the 11th international drying symposium drying, 98 (1998), Ziti Editions Thessaloniki: Ziti Editions Thessaloniki Greece), 1093-1099
[9] Lewicki, P. P.; Pawlak, G., Effect of drying on microstructure of plant tissue, Dry Technol, 21, 4, 657-683 (2003)
[10] Bai, Y.; Rahman, M. S.; Perera, C. O.; Smith, B.; Melton, L. D., Structural changes in apple rings during convection air-drying with controlled temperature and humidity, J Agric Food Chem, 50, 11, 3179-3185 (2002)
[11] Rahman, M. S.; Al-Zakwani, I.; Guizani, N., Pore formation in apple during air-drying as a function of temperature: porosity and pore-size distribution, J Sci Food Agric, 85, 6, 979-989 (2005)
[12] Funebo, T.; Lla, Ahrné; Kidman, S.; Langton, M.; Skjöldebrand, C., Microwave heat treatment of apple before air dehydration - effects on physical properties and microstructure, J Food Eng, 46, 3, 173-182 (2000)
[13] Bartlett, M. K.; Scoffoni, C.; Sack, L., The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis, Ecol Lett, 15, 5, 393-405 (2012)
[14] Crapiste, G. H.; Whitaker, S.; Rotstein, E., Drying of cellular material - I. A mass transfer theory, Chem Eng Sci, 43, 11, 2919-2928 (1988)
[15] Zhu, H. X.; Melrose, J. R., A mechanics model for the compression of plant and vegetative tissues, J Theor Biol, 221, 1, 89-101 (2003) · Zbl 1464.92036
[16] Wang, C. X.; Wang, L.; Thomas, C. R., Modelling the mechanical properties of single suspension-cultured tomato cells, Ann Bot, 93, 4, 443-453 (2004)
[17] Wu, N.; Pitts, M. J., Development and validation of a finite element model of an apple fruit cell, Postharvest Biol Technol, 16, 1, 1-8 (1999)
[18] Gao, Q.; Pitt, R. E., Mechanics of parenchyma tissue based on cell orientation and microstructure, Trans ASABE, 34, 1, 0232-0238 (1991)
[19] Pitt, R. E., Models for the rheology and statistical strength of uniformly stressed vegetative tissue, Trans ASABE, 25, 6, 1776-1784 (1982)
[20] Rudge, T.; Haseloff, J., A computational model of cellular morphogenesis in plants, (Capcarrère, M.; Freitas, A.; Bentley, P.; Johnson, C.; Timmis, J., Advances in artificial life (2005), Springer: Springer Berlin (Heidelberg)), 78-87
[21] Honda, H.; Tanemura, M.; Nagai, T., A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate, J Theor Biol, 226, 4, 439-453 (2004) · Zbl 1439.92074
[22] Liu, Z.; Hong, W.; Suo, Z.; Swaddiwudhipong, S.; Zhang, Y., Modeling and simulation of buckling of polymeric membrane thin film gel, Comput Mater Sci, 49, Suppl 1, S60-S64 (2010)
[23] Aregawi, W. A.; Defraeye, T.; Verboven, P.; Herremans, E.; Roeck, G.; Nicolai, B. M., Modeling of coupled water transport and large deformation during dehydration of apple tissue, Food Bioprocess Technol, 6, 8, 1963-1978 (2013)
[24] Fanta, S. W.; Abera, M. K.; Aregawi, W. A.; Ho, Q. T.; Verboven, P.; Carmeliet, J., Microscale modeling of coupled water transport and mechanical deformation of fruit tissue during dehydration, J Food Eng, 124, 0, 86-96 (2014)
[25] Abera, M.; Fanta, S.; Verboven, P.; Ho, Q.; Carmeliet, J.; Nicolai, B., Virtual fruit tissue generation based on cell growth modelling, Food Bioprocess Technol, 6, 4, 859-869 (2013)
[26] Liu, G. R.; Liu, M. B., Smoothed particle hydrodynamics: a meshfree particle method (2003), World Scientific Publishing Co.: World Scientific Publishing Co. Singapore · Zbl 1046.76001
[27] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 1-4, 3-47 (1996) · Zbl 0891.73075
[28] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics - theory and application to non-spherical stars, Mon Not R Astron Soc, 181, 375-389 (1977) · Zbl 0421.76032
[29] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 2, 229-256 (1994) · Zbl 0796.73077
[30] Liu, G. R.; Gu, Y. T., A point interpolation method for two-dimensional solids, Int J Numer Methods Eng, 50, 4, 937-951 (2001) · Zbl 1050.74057
[31] Liu, G. R.; Gu, Y. T., Comparisons of two meshfree local point interpolation methods for structural analyses, Comput Mech, 29, 2, 107-121 (2002) · Zbl 1053.74659
[32] Atluri, S.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 2, 117-127 (1998) · Zbl 0932.76067
[33] Liu, G. R.; Gu, Y. T., A local radial point interpolation method (LRPIM) for free vibration analyses of 2-d solids, J Sound Vib, 246, 1, 29-46 (2001)
[34] Liu, G. R.; Gu, Y. T., Boundary meshfree methods based on the boundary point interpolation methods, Eng Anal Bound Elem, 28, 5, 475-487 (2004) · Zbl 1130.74466
[35] Wu, Y.; Liu, G.; Gu, Y., Application of meshless local Petrov-Galerkin (MLPG) approach to simulation of incompressible flow, Numer Heat Transf Part B, 48, 5, 459-475 (2005)
[36] Gu, Y. T.; Wang, Q. X.; Lam, K. Y., A meshless local Kriging method for large deformation analyses, Comput Methods Appl Mech Eng, 196, 9-12, 1673-1684 (2007) · Zbl 1173.74471
[37] Gu, Y. T.; Liu, G. R., Meshless techniques for convection dominated problems, Comput Mech, 38, 2, 171-182 (2006) · Zbl 1138.76402
[38] Van Liedekerke, P.; Ghysels, P.; Tijskens, E.; Samaey, G.; Roose, D.; Ramon, H., Mechanisms of soft cellular tissue bruising. A particle based simulation approach, Soft Matter, 7, 7, 3580-3591 (2011)
[39] Liedekerke, P. V.; Ghysels, P.; Tijskens, E.; Samaey, G.; Smeedts, B.; Roose, D., A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates, Phys Biol, 7, 2, 026006 (2010)
[41] Van Liedekerke, P.; Tijskens, E.; Ramon, H.; Ghysels, P.; Samaey, G.; Roose, D., Particle-based model to simulate the micromechanics of biological cells, Phys Rev E, 81, 6, 061906 (2010)
[42] Karunasena, H. C.P.; Senadeera, W.; Gu, Y. T.; Brown, R. J., A coupled SPH-DEM model for fluid and solid mechanics of apple parenchyma cells during drying, (Brandner, P. A.; Pearce, B. W., Proceedings of the 18th australian fluid mechanics conference (2012), Australasian Fluid Mechanics Society: Australasian Fluid Mechanics Society Launceston (Australia))
[43] Karunasena, H. C.P.; Senadeera, W.; Gu, Y. T.; Brown, R. J., A particle based micromechanics model to simulate drying behaviors of vegetable cells, (Gu, Y. T.; Saha, S. C., Proceedings of the 4th international conference on computational methods (ICCM 2012 (2012))
[45] Taiz, L.; Zeiger, E., Water and plant cells, In: Plant physiology, 73-84 (2010), Sinauer Associates: Sinauer Associates Sunderland (USA)
[46] Nilsson, S. B.; Hertz, C. H.; Falk, S., On the relation between turgor pressure and tissue rigidity. II, Physiol Plant, 11, 4, 818-837 (1958)
[47] Smith, A. E.; Moxham, K. E.; Middelberg, A. P.J., On uniquely determining cell-wall material properties with the compression experiment, Chem Eng Sci, 53, 23, 3913-3922 (1998)
[48] Wu, H. I.; Spence, R. D.; Sharpe, P. J.H.; Goeschl, J. D., Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles, Plant Cell Environ, 8, 8, 563-570 (1985)
[49] Jarvis, M. C., Intercellular separation forces generated by intracellular pressure, Plant Cell Environ, 21, 12, 1307-1310 (1998)
[50] Chaplain, M. A.J., The strain energy function of an ideal plant cell wall, J Theor Biol, 163, 1, 77-97 (1993)
[51] Hettiaratchi, D. R.P.; O’Callaghan, J. R., Structural mechanics of plant cells, J Theor Biol, 74, 2, 235-257 (1978)
[52] Karunasena, H. C.P.; Hesami, P.; Senadeera, W.; Gu, Y. T.; Brown, R. J.; Oloyede, A., Scanning electron microscopic study of microstructure of gala apples during hot air drying, Dry Technol, 32, 4, 455-468 (2014)
[53] Blum, A., Plant water relations, plant stress and plant production, In: Plant breeding for water-limited environments, 26 (2011), Springer: Springer New York
[54] Barker, D. J.; Sullivan, C. Y.; Moser, L. E., Water deficit effects on osmotic potential, cell wall elasticity, and proline in five forage grasses, Agron J, 85, 2, 270-275 (1993)
[55] Neumann, P. M., The role of cell wall adjustments in plant resistance to water deficits, Crop Sci, 35, 5, 1258-1266 (1995)
[56] Fan, L.; Linker, R.; Gepstein, S.; Tanimoto, E.; Yamamoto, R.; Neumann, P. M., Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics, Plant Physiol, 140, 2, 603-612 (2006)
[57] Fan, L.; Neumann, P. M., The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH, Plant Physiol, 135, 4, 2291-2300 (2004)
[58] Cleary, P. W.; Monaghan, J. J., Conduction modelling using smoothed particle hydrodynamics, J Comput Phys, 148, 1, 227-264 (1999) · Zbl 0930.76069
[59] Monaghan, J. J.; Kajtar, J. B., SPH particle boundary forces for arbitrary boundaries, Comput Phys Commun, 180, 10, 1811-1820 (2009) · Zbl 1197.76104
[60] Bian, X.; Ellero, M., A splitting integration scheme for the SPH simulation of concentrated particle suspensions, Comput Phys Commun, 185, 1, 53-62 (2014) · Zbl 1344.65033
[61] Van Liedekerke, P.; Smeets, B.; Odenthal, T.; Tijskens, E.; Ramon, H., Solving microscopic flow problems using Stokes equations in SPH, Comput Phys Commun, 184, 7, 1686-1696 (2013)
[62] Colagrossi, A.; Bouscasse, B.; Antuono, M.; Marrone, S., Particle packing algorithm for SPH schemes, Comput Phys Commun, 183, 8, 1641-1653 (2012) · Zbl 1307.65140
[63] Morris, J. P.; Fox, P. J.; Zhu, Y., Modeling low Reynolds number incompressible flows using SPH, J Comput Phys, 136, 1, 214-226 (1997) · Zbl 0889.76066
[64] Marshall, J. G.; Dumbroff, E. B., Turgor regulation via cell wall adjustment in white spruce, Plant Physiol, 119, 313-319 (1999)
[65] Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO - the open visualization tool, Model Simul Mater Sci Eng, 18, 1, 015012 (2010)
[66] Monaghan, J. J., Smoothed particle hydrodynamics, Rep Prog Phys, 68, 8, 1703 (2005) · Zbl 1160.76399
[67] Chen, J. K.; Beraun, J. E.; Jih, C. J., Completeness of corrective smoothed particle method for linear elastodynamics, Comput Mech, 24, 4, 273-285 (1999) · Zbl 0967.74078
[68] Monaghan, J. J., SPH without a tensile instability, J Comput Phys, 159, 2, 290-311 (2000) · Zbl 0980.76065
[69] Randles, P. W.; Libersky, L. D., Normalized SPH with stress points, Int J Numer Methods Eng, 48, 10, 1445-1462 (2000) · Zbl 0963.74079
[70] Swegle, J. W.; Hicks, D. L.; Attaway, S. W., Smoothed particle hydrodynamics stability analysis, J Comput Phys, 116, 1, 123-134 (1995) · Zbl 0818.76071
[71] Karunasena, H. C.P.; Senadeera, W.; Brown, R. J.; Gu, Y. T., A particle based model to simulate microscale morphological changes of plant tissues during drying, Soft Matter (2014), , 10.1039/C4SM00526K, published online · Zbl 1449.74207
[72] Hosseini, S. M.; Feng, J. J., A particle-based model for the transport of erythrocytes in capillaries, Chem Eng Sci, 64, 22, 4488-4497 (2009)
[73] Pan, T. W.; Wang, T., Dynamical simulation of red blood cell rheology in microvessels, Int J Numer Anal Model, 6, 3, 455-473 (2009) · Zbl 1158.92008
[74] Shi, L.; Pan, T.-W.; Glowinski, R., Deformation of a single red blood cell in bounded Poiseuille flows, Phys Rev E, 85, 1, 016307 (2012)
[75] Ghysels, P.; Samaey, G.; Van Liedekerke, P.; Tijskens, E.; Ramon, H.; Roose, D., Multiscale modeling of viscoelastic plant tissue, Int J Multiscale Comput Eng, 8, 4, 379-396 (2010)
[76] Araujo, J. C.; Téran, F. C.; Oliveira, R. A.; Nour, E. A.A.; Montenegro, M. A.P.; Campos, J. R., Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge, J Electron Microsc, 52, 4, 429-433 (2003)
[77] Bray, D. F.; Bagu, J.; Koegler, P., Comparison of hexamethyldisilazane (HMDS), Peldri II, and critical-point drying methods for scanning electron microscopy of biological specimens, Microsc Res Tech, 26, 6, 489-495 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.