×

Rosenbrock strong stability-preserving methods for convection-diffusion-reaction equations. (English) Zbl 1297.65082

Summary: Rosenbrock methods are normally used for solving moderately stiff problems and strong-stability preserving ones are employed a lot for hyperbolic conservation laws. Their combination called additive Rosenbrock-strong stability preserving (Ros-SSP) schemes are first introduced in this paper to deal with convection-diffusion-reaction equations. Accuracy and stability of the Ros-SSP scheme are considered. Numerical results are given to prove advantages of Ros-SSP methods. A practical application of a three-stage, second order Ros-SSP method solving a spatially discretized angiogenesis model in two-dimensional case is provided as well.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
65L05 Numerical methods for initial value problems involving ordinary differential equations
35L57 Initial-boundary value problems for higher-order hyperbolic systems
65L20 Stability and convergence of numerical methods for ordinary differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Odanaka, S.: Multidimensional discretization of stationary quantum drift-diffusion model for ultrasmall MOSFET structures. IEEE Trans. Comput. Aided Des. 23, 837–842 (2004) · doi:10.1109/TCAD.2004.828128
[2] Peraire, J., Persson, P.-O.: High-order discontinuous Galerkin methods for CFD. In: Adaptive High-Order Methods in Computational Fluid Dynamics, pp. 119–152 (Adv. Comput. Fluid Dyn., 2) (2011) · Zbl 1358.76043
[3] Hildebrand, M., Kuperman, M., Wio, H., Mikhailov, A.S., Ertl, G.: Self-organized chemical nanoscale microreactors. Phys. Rev. Lett. 83, 1475–1478 (1999) · doi:10.1103/PhysRevLett.83.1475
[4] Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–900 (1998) · Zbl 0923.92011 · doi:10.1006/bulm.1998.0042
[5] Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics, vol. 33. Springer, Berlin (2003) · Zbl 1030.65100
[6] Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaixs. IMA J. Numer. Anal. 27, 332–365 (1997) · Zbl 1119.65094 · doi:10.1093/imanum/drl018
[7] Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. Springer Texts in Applied Mathematics, vol. 54. Springer, New York (2008) · Zbl 1134.65068
[8] Cockburn, B., Shu, C.W. : The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998) · Zbl 0920.65059
[9] Hundsdorfer, W., Koren, B., van Loon, M., Verwer, J.G.: A positive finite-difference advection scheme. J. Comput. Phys. 117, 34–46 (1995) · Zbl 0860.65073 · doi:10.1006/jcph.1995.1042
[10] Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997) · Zbl 0896.65061 · doi:10.1016/S0168-9274(97)00056-1
[11] Tyson, R., Stern, L.G., LeVeque, R.J.: Fractional step methods applied to a chemotaxis model. J. Math. Biol. 41, 455–475 (2000) · Zbl 1002.92003 · doi:10.1007/s002850000038
[12] Persson, P.-O., Peraire, J.: Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier–Stokes equations. SIAM J. Sci. Comput. 30, 2709–2733 (2008) · Zbl 1362.76052 · doi:10.1137/070692108
[13] Verwer, J.G., Spee, E.J., Blom, J.G., Hundsdorfer, W.: A second-order Rosenbrock method applied to photochemical dispersion problems. SIAM J. Sci. Comput. 20, 1456–1480 (1999) · Zbl 0928.65116 · doi:10.1137/S1064827597326651
[14] Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003) · Zbl 1013.65103 · doi:10.1016/S0168-9274(02)00138-1
[15] Araújo, A.L., Murua, A., Sanz-Serna, J.M.: Symplectic methods based on decompositions. SIAM J. Numer. Anal. 34, 1926–1947 (1997) · Zbl 0889.65082 · doi:10.1137/S0036142995292128
[16] Hairer, E.,Wanner, G.: Solving Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1996) · Zbl 0859.65067
[17] Hairer, E.: Order conditions for numerical methods for partitioned ordinary differential equations. Numer. Math. 36, 431–445 (1980/81)
[18] Tadmor, E.: Approximate solutions of nonlinear conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997), pp. 1–149 (Lecture Notes in Mathematics, 1697) (1998) · Zbl 0927.65110
[19] Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001) · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[20] Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[21] Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998) · Zbl 0897.65058 · doi:10.1090/S0025-5718-98-00913-2
[22] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001/02)
[23] Gustafsson, K., Söderlind, G.: Control strategies for the iterative solution of nonlinear equations in ODE solvers. SIAM J. Sci. Comput. 18, 23–40 (1997) · Zbl 0867.65035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.