×

Convergence of the two-point Weierstrass root-finding method. (English) Zbl 1297.65052

Let \((\mathbb{K},|\cdot|)\) denotes an arbitrary normed field and \(\mathbb{K}[z]\) denotes the ring of polynomials (in one variable) over \(\mathbb{K}\). Let \(f \in \mathbb{K}[z]\) be a polynomial of degree \(n \geq 2\) which has \(n\) simple zeros in \(\mathbb{K}\). A new local and semilocal convergence theorems for two–point Weierstrass method for the simultaneous computation of polynomial zeros given in the article. Three numerical examples presented.

MSC:

65H04 Numerical computation of roots of polynomial equations
12Y05 Computational aspects of field theory and polynomials (MSC2010)
13P05 Polynomials, factorization in commutative rings
26C10 Real polynomials: location of zeros
Full Text: DOI

References:

[1] Abu-Alshaikh I., Sahin A.: Two-point iterative methods for solving nonlinear equations. Appl. Math. Comput. 182, 871–878 (2006) · Zbl 1107.65042 · doi:10.1016/j.amc.2006.04.064
[2] Argyros, I.K.; González, D.: Unified majorizing sequences for Traub type multipoint iterative procedures. Numer. Algorithms. doi: 10.1007/s11075-012-9678-3 (2012) · Zbl 1408.65033
[3] Dochev K.K.: Modified Newton method for the simultaneous computation of all roots of a given algebraic equation (in Bulgarian). Phys. Math. J. Bulg. Acad. Sci. 5, 136–139 (1962)
[4] Dochev K., Byrnev P.: Certain modifications of Newton’s method for the approximate solution of algebraic equations. USSR Comput. Math. Math. Phys. 4(5), 174–182 (1964) · Zbl 0152.14601 · doi:10.1016/0041-5553(64)90148-X
[5] Ezquerro J.A., Gutiérrez J.M., Hernández M.A., Salanova M.A.: A biparametric family of inverse-free multipoint iterations. Comput. Appl. Math. 19(1), 109–124 (2000) · Zbl 1344.65051
[6] Iliev, A., Kyurkchiev, N.: Nontrivial Methods in Numerical Analysis: Selected Topics in Numerical Analysis. Lambert Acad. Publ., Saarbrucken (2010)
[7] Grau-Sánchez M., Gutiérrez J.M.: Zero-finder methods derived from Obreshkov’s techniques. Appl. Math. Comput. 215, 2992–3001 (2009) · Zbl 1187.65051 · doi:10.1016/j.amc.2009.09.046
[8] Kanno S., Kjurkchiev N.V., Yamamoto T.: On some methods for the simultaneous determination of polynomial zeros. Jpn. J. Indus. Appl. Math. 13, 267–288 (1996) · Zbl 0859.65047 · doi:10.1007/BF03167248
[9] Nedzhibov G.H., Hasanov V.I., Petkov M.P.: On some families of multi-point iterative methods for solving nonlinear equations. Numer. Algorithms 42, 127–136 (2006) · Zbl 1117.65067 · doi:10.1007/s11075-006-9027-5
[10] Niell A.M.: Method for simultaneous determination of all the roots of algebraic equations. Comput. Math. Appl. 41, 1–14 (2001) · Zbl 1022.65054 · doi:10.1016/S0898-1221(01)85002-1
[11] Petković, M.: Point Estimation of Root Finding Methods, Lecture Notes in Mathematics. Lecture Notes in Mathematics, vol. 1933. Springer, Berlin (2008) · Zbl 1160.65017
[12] Proinov P.D.: New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complex. 26, 3–42 (2010) · Zbl 1185.65095 · doi:10.1016/j.jco.2009.05.001
[13] Proinov, P.D.: Relationships between different types of initial conditions for the simultaneous root finding methods (in preparation) · Zbl 1330.65070
[14] Sendov, B., Andreev, A., Kjurkchiev, N.: Numerical solution of polynomial equations. In: Ciarlet, P., Lions, J. (eds.) Handbook of Numerical Analysis, vol. III, pp. 625–778. Elsevier, Amsterdam (1994) · Zbl 0925.65086
[15] Stewart G.W.: On the convergence of multipoint iterations. Numer. Math. 68, 143–147 (1994) · Zbl 0815.65063 · doi:10.1007/s002110050053
[16] Wang D., Zhao F.: On the determination of a safe initial approximation for the Durand–Kerner algorithm. J. Comput. Appl. Math. 38, 447–456 (1991) · Zbl 0747.65033 · doi:10.1016/0377-0427(91)90188-P
[17] Weierstrass, K.: Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Sitzungsber. Königl. Akad. Wiss. Berlin, 1085–1101 (1891) · JFM 23.0083.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.