×

A manifestly MHV Lagrangian for \( \mathcal{N} = 4 \) Yang-Mills. (English) Zbl 1296.81052

Summary: We derive a manifestly MHV Lagrangian for the \( \mathcal{N} = 4 \) supersymmetric Yang-Mills theory in light-cone superspace. This is achieved by constructing a canonical redefinition which maps the \( \mathcal{N} = 4 \) superfield, \(\phi\), and its conjugate, \( \bar{\phi } \), to a new pair of superfields, \(\chi\) and \( \tilde{\chi } \). In terms of these new superfields the \( \mathcal{N} = 4 \) Lagrangian takes a (non-polynomial) manifestly MHV form, containing vertices involving two superfields of negative helicity and an arbitrary number of superfields of positive helicity. We also discuss constraints satisfied by the new superfields, which ensure that they describe the correct degrees of freedom in the \( \mathcal{N} = 4 \) supermultiplet. We test our derivation by showing that an expansion of our superspace Lagrangian in component fields reproduces the correct gluon MHV vertices.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
46S60 Functional analysis on superspaces (supermanifolds) or graded spaces
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [SPIRES]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [SPIRES]. · Zbl 1355.81126
[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [SPIRES]. · Zbl 0914.53048
[4] A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, hep-th/0604151 [SPIRES]. · Zbl 1128.22013
[5] S. Gukov and E. Witten, Gauge theory, ramification and the geometric Langlands program, hep-th/0612073 [SPIRES]. · Zbl 1237.14024
[6] E. Witten, Geometric Langlands And The Equations Of Nahm And Bogomolny, arXiv:0905.4795 [SPIRES]. · Zbl 1216.81108
[7] N. Beisert et al., Review of AdS/CFT Integrability: An Overview, arXiv:1012.3982 [SPIRES]. · Zbl 1268.81126
[8] Z. Bajnok, A. Hegedus, R.A. Janik and T. Lukowski, Five loop Konishi from AdS/CFT, Nucl. Phys.B 827 (2010) 426 [arXiv:0906.4062] [SPIRES]. · Zbl 1203.81132 · doi:10.1016/j.nuclphysb.2009.10.015
[9] B.S. DeWitt, Quantum theory of gravity. III. Applications of the covariant theory, Phys. Rev.162 (1967) 1239 [SPIRES]. · Zbl 0161.46501 · doi:10.1103/PhysRev.162.1239
[10] S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett.56 (1986) 2459 [SPIRES]. · doi:10.1103/PhysRevLett.56.2459
[11] F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys.B 306 (1988) 759 [SPIRES]. · doi:10.1016/0550-3213(88)90442-7
[12] V.P. Nair, A Current Algebra For Some Gauge Theory Amplitudes, Phys. Lett.B 214 (1988) 215 [SPIRES].
[13] M.L. Mangano and S.J. Parke, Multi-Parton Amplitudes in Gauge Theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [SPIRES]. · doi:10.1016/0370-1573(91)90091-Y
[14] L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [SPIRES].
[15] Z. Bern, L.J. Dixon and D.A. Kosower, On-Shell Methods in Perturbative QCD, Annals Phys.322 (2007) 1587 [arXiv:0704.2798] [SPIRES]. · Zbl 1122.81077 · doi:10.1016/j.aop.2007.04.014
[16] F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP09 (2004) 006 [hep-th/0403047] [SPIRES]. · doi:10.1088/1126-6708/2004/09/006
[17] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.252 (2004) 189 [hep-th/0312171] [SPIRES]. · Zbl 1105.81061 · doi:10.1007/s00220-004-1187-3
[18] K. Risager, A direct proof of the CSW rules, JHEP12 (2005) 003 [hep-th/0508206] [SPIRES]. · doi:10.1088/1126-6708/2005/12/003
[19] R. Britto, F. Cachazo and B. Feng, New Recursion Relations for Tree Amplitudes of Gluons, Nucl. Phys.B 715 (2005) 499 [hep-th/0412308] [SPIRES]. · Zbl 1207.81088 · doi:10.1016/j.nuclphysb.2005.02.030
[20] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct Proof Of Tree-Level Recursion Relation In Yang-Mills Theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [SPIRES]. · doi:10.1103/PhysRevLett.94.181602
[21] A. Brandhuber, B.J. Spence and G. Travaglini, One-loop gauge theory amplitudes in \(\mathcal{N} = 4\) super Yang-Mills from MHV vertices, Nucl. Phys.B 706 (2005) 150 [hep-th/0407214] [SPIRES]. · Zbl 1119.81363 · doi:10.1016/j.nuclphysb.2004.11.023
[22] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [SPIRES]. · Zbl 1049.81644 · doi:10.1016/0550-3213(94)90179-1
[23] A. Gorsky and A. Rosly, From Yang-Mills Lagrangian to MHV diagrams, JHEP01 (2006) 101 [hep-th/0510111] [SPIRES]. · doi:10.1088/1126-6708/2006/01/101
[24] P. Mansfield, The Lagrangian origin of MHV rules, JHEP03 (2006) 037 [hep-th/0511264] [SPIRES]. · Zbl 1226.81141 · doi:10.1088/1126-6708/2006/03/037
[25] J.H. Ettle and T.R. Morris, Structure of the MHV-rules Lagrangian, JHEP08 (2006) 003 [hep-th/0605121] [SPIRES]. · doi:10.1088/1126-6708/2006/08/003
[26] H. Feng and Y.-t. Huang, MHV lagrangian for \(\mathcal{N} = 4\) super Yang-Mills, JHEP04 (2009) 047 [hep-th/0611164] [SPIRES]. · doi:10.1088/1126-6708/2009/04/047
[27] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [SPIRES]. · doi:10.1088/1126-6708/2007/06/064
[28] A. Brandhuber, P. Heslop and G. Travaglini, MHV Amplitudes in \(\mathcal{N} = 4\) Super Yang-Mills and W ilson Loops, Nucl. Phys.B 794 (2008) 231 [arXiv:0707.1153] [SPIRES]. · Zbl 1273.81201 · doi:10.1016/j.nuclphysb.2007.11.002
[29] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys.B 795 (2008) 52 [arXiv:0709.2368] [SPIRES]. · Zbl 1219.81191 · doi:10.1016/j.nuclphysb.2007.11.007
[30] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in \(\mathcal{N} = 4\) super-Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [SPIRES]. · Zbl 1203.81112 · doi:10.1016/j.nuclphysb.2009.11.022
[31] A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the \(\mathcal{N} = 4\) super Yang-Mills S-matrix, Phys. Rev.D 78 (2008) 125005 [arXiv:0807.4097] [SPIRES].
[32] R. Ricci, A.A. Tseytlin and M. Wolf, On T-duality and Integrability for Strings on AdS Backgrounds, JHEP12 (2007) 082 [arXiv:0711.0707] [SPIRES]. · Zbl 1246.81295 · doi:10.1088/1126-6708/2007/12/082
[33] N. Berkovits and J. Maldacena, Fermionic T-duality, Dual Superconformal Symmetry and the Amplitude/Wilson Loop Connection, JHEP09 (2008) 062 [arXiv:0807.3196] [SPIRES]. · Zbl 1245.81267 · doi:10.1088/1126-6708/2008/09/062
[34] N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual Superconformal Symmetry from AdS5 × S5Superstring Integrability, Phys. Rev.D 78 (2008) 126004 [arXiv:0807.3228] [SPIRES].
[35] L.V. Avdeev, O.V. Tarasov and A.A. Vladimirov, Vanishing Of The Three Loop Charge Renormalization Function In A Supersymmetric Gauge Theory, Phys. Lett.B 96 (1980) 94 [SPIRES].
[36] M.T. Grisaru, M. Roček and W. Siegel, Zero Three Loop β-function in N = 4 Super Yang-Mills Theory, Phys. Rev. Lett.45 (1980) 1063 [SPIRES]. · doi:10.1103/PhysRevLett.45.1063
[37] M.F. Sohnius and P.C. West, Conformal Invariance in N = 4 Supersymmetric Yang-Mills Theory, Phys. Lett.B 100 (1981) 245 [SPIRES].
[38] W.E. Caswell and D. Zanon, Zero Three Loop β-function in the \(\mathcal{N} = 4\) Supersymmetric Yang-Mills Theory, Nucl. Phys.B 182 (1981) 125 [SPIRES]. · doi:10.1016/0550-3213(81)90461-2
[39] P.S. Howe, K.S. Stelle and P.K. Townsend, Miraculous Ultraviolet Cancellations in Supersymmetry Made Manifest, Nucl. Phys.B 236 (1984) 125 [SPIRES]. · doi:10.1016/0550-3213(84)90528-5
[40] S. Mandelstam, Light Cone Superspace and the Ultraviolet Finiteness of the \(\mathcal{N} = 4\) Model, Nucl. Phys.B 213 (1983) 149 [SPIRES]. · doi:10.1016/0550-3213(83)90179-7
[41] L. Brink, O. Lindgren and B.E.W. Nilsson, The Ultraviolet Finiteness of the \(\mathcal{N} = 4\) Yang-Mills Theory, Phys. Lett.B 123 (1983) 323 [SPIRES].
[42] J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in \(\mathcal{N} = 4\) super Yang-Mills theory, JHEP05 (2009) 046 [arXiv:0902.2987] [SPIRES]. · doi:10.1088/1126-6708/2009/05/046
[43] L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, arXiv:1007.3243 [SPIRES]. · Zbl 1301.81096
[44] B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering amplitudes, arXiv:1007.3246 [SPIRES]. · Zbl 1306.81096
[45] B. Eden, G.P. Korchemsky and E. Sokatchev, More on the duality correlators/amplitudes, arXiv:1009.2488 [SPIRES]. · Zbl 1306.81096
[46] L. Brink, O. Lindgren and B.E.W. Nilsson, \( \mathcal{N} = 4\) Yang-Mills Theory on the Light Cone, Nucl. Phys.B 212 (1983) 401 [SPIRES]. · doi:10.1016/0550-3213(83)90678-8
[47] M. Bianchi, H. Elvang and D.Z. Freedman, Generating Tree Amplitudes in \(\mathcal{N} = 4\) SYM and \(\mathcal{N} = 8\) SG, JHEP09 (2008) 063 [arXiv:0805.0757] [SPIRES]. · Zbl 1245.81083 · doi:10.1088/1126-6708/2008/09/063
[48] H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion Relations, Generating Functions and Unitarity Sums in \(\mathcal{N} = 4\) SYM Theory, JHEP04 (2009) 009 [arXiv:0808.1720] [SPIRES]. · doi:10.1088/1126-6708/2009/04/009
[49] H. Elvang, D.Z. Freedman and M. Kiermaier, Solution to the Ward Identities for Superamplitudes, JHEP10 (2010) 103 [arXiv:0911.3169] [SPIRES]. · Zbl 1291.81243 · doi:10.1007/JHEP10(2010)103
[50] H. Elvang, D.Z. Freedman and M. Kiermaier, SUSY Ward identities, Superamplitudes and Counterterms, arXiv:1012.3401 [SPIRES]. · Zbl 1270.81135
[51] V.V. Khoze, Amplitudes in the beta-deformed conformal Yang-Mills, JHEP02 (2006) 040 [hep-th/0512194] [SPIRES]. · doi:10.1088/1126-6708/2006/02/040
[52] S. Ananth, S. Kovacs and H. Shimada, Proof of all-order finiteness for planar beta-deformed Yang-Mills, JHEP01 (2007) 046 [hep-th/0609149] [SPIRES]. · doi:10.1088/1126-6708/2007/01/046
[53] S. Ananth, S. Kovacs and H. Shimada, Proof of ultra-violet finiteness for a planar non-supersymmetric Yang-Mills theory, Nucl. Phys.B 783 (2007) 227 [hep-th/0702020] [SPIRES]. · Zbl 1150.81013 · doi:10.1016/j.nuclphysb.2007.04.005
[54] S. Ananth, L. Brink, S.-S. Kim and P. Ramond, Non-linear realization of PSU(2, 2|4) on the light-cone, Nucl. Phys.B 722 (2005) 166 [hep-th/0505234] [SPIRES]. · Zbl 1128.81321 · doi:10.1016/j.nuclphysb.2005.06.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.