×

Implementation of the SU(2) Hamiltonian symmetry for the DMRG algorithm. (English) Zbl 1296.81004

Summary: In the Density Matrix Renormalization Group (DMRG) algorithm [S. White, Phys. Rev. Lett. 69, 2863 (1992) and Phys. Rev. B 48, 345 (1993)], Hamiltonian symmetries play an important rôle. Using symmetries, the matrix representation of the Hamiltonian can be blocked. Diagonalizing each matrix block is more efficient than diagonalizing the original matrix. This paper explains how the the DMRG++ code [G. Alvarez, Comput. Phys. Comm. 180, No. 9, 1572–1578 (2009)] has been extended to handle the non-local SU(2) symmetry in a model independent way. Improvements in CPU times compared to runs with only local symmetries are discussed for the one-orbital Hubbard model, and for a two-orbital Hubbard model for iron-based superconductors. The computational bottleneck of the algorithm and the use of shared memory parallelization are also addressed.{ }Program summary{ }Program title: DMRG++{ }Catalog identifier: AEDJ_v2_0{ }Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDJ_v2_0.html{ }Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland{ }Licensing provisions: Special license. See http://cpc.cs.qub.ac.uk/licence/AEDJ_v2_0.html{ }No. of lines in distributed program, including test data, etc.: 211560{ }No. of bytes in distributed program, including test data, etc.: 10572185{ }Distribution format: tar.gz{ }Programming language: C++.{ }Computer: PC.{ }Operating system: Multiplatform, tested on Linux.{ }Has the code been vectorized or parallelized?: Yes. 1 to 8 processors with MPI, 2 to 4 cores with pthreads.{ }RAM: 1GB (256MB is enough to run the included test){ }Classification: 23.{ }Catalog identifier of previous version: AEDJ_v1_0{ }Journal reference of previous version: Comput. Phys. Comm. 180(2009)1572{ }External routines: BLAS and LAPACK{ }Nature of problem:{ }Strongly correlated electrons systems, display a broad range of important phenomena, and their study is a major area of research in condensed matter physics. In this context, model Hamiltonians are used to simulate the relevant interactions of a given compound, and the relevant degrees of freedom. These studies rely on the use of tight-binding lattice models that consider electron localization, where states on one site can be labeled by spin and orbital degrees of freedom. The calculation of properties from these Hamiltonians is a computational intensive problem, since the Hilbert space over which these Hamiltonians act grows exponentially with the number of sites on the lattice.{ }Solution method:{ }The DMRG is a numerical variational technique to study quantum many body Hamiltonians. For one-dimensional and quasi one-dimensional systems, the DMRG is able to truncate, with bounded errors and in a general and efficient way, the underlying Hilbert space to a constant size, making the problem tractable.{ }Running time:{ }Varies. The test suite provided takes about 10 min to run on a serial machine.

MSC:

81-04 Software, source code, etc. for problems pertaining to quantum theory
81T17 Renormalization group methods applied to problems in quantum field theory
81P40 Quantum coherence, entanglement, quantum correlations

Software:

DMRG++; BLAS; LAPACK

References:

[1] White, S., Phys. Rev. Lett., 69, 2863 (1992)
[2] White, S., Phys. Rev. B, 48, 345 (1993)
[3] Alvarez, G., The density matrix renormalization group for strongly correlated electron systems: a generic implementation, Comput. Phys. Comm., 180, 1572 (2009)
[4] Schollwöck, U., The density-matrix renormalization group, Rev. Modern Phys., 77, 259 (2005) · Zbl 1205.82073
[5] McCulloch, I. P.; Gulácsi, M., The non-Abelian density matrix renormalization group algorithm, Europhys. Lett., 57, 852 (2002)
[6] McCulloch, I. P.; Gulácsi, M., Aust. J. Phys., 53, 597-612 (2000) · Zbl 1025.81036
[7] Holzner, A.; McCulloch, I. P.; Schollwöck, U.; von Delft, J.; Heidrich-Meisner, F., Phys. Rev. B, 80, 205114 (2009)
[8] Smerat, S.; Schollwöck, U.; McCulloch, I. P.; Schoeller, H., Phys. Rev. B, 79, 235107 (2009)
[9] McCulloch, I. P.; Kube, R.; Kurz, M.; Kleine, A.; Schollwöck, U.; Kolezhuk, A. K., Phys. Rev. B, 77, 094404 (2008)
[10] Hubbard, J., Proc. R. Soc. London Ser. A, 276, 238 (1963)
[11] Hubbard, J., Proc. R. Soc. London Ser. A, 281, 401 (1964)
[12] Spalek, J.; Oleś, A., Physica B, 86-88, 375 (1977)
[13] Spalek, J., Acta Phys. Polon. A, 111, 409-424 (2007)
[14] Daghofer, M.; Moreo, A.; Riera, J. A.; Arrigoni, E.; Scalapino, D.; Dagotto, E., Phys. Rev. Lett., 101, 237004 (2008)
[15] Cornwell, J. F., Group Theory in Physics (1984), Academic Press: Academic Press London · Zbl 0557.20001
[16] Hager, G.; Jeckelmann, E.; Fehske, H.; Wellein, G., Parallelization strategies for density matrix renormalization group algorithms on shared-memory systems, J. Comput. Phys., 194, 795-808 (2004) · Zbl 1045.81575
[17] Chan, G. K.-L., An algorithm for large scale density matrix renormalization group calculations, J. Chem. Phys., 120, 3172-3178 (2004)
[18] Kurashige, Y.; Yanai, T., High-performance ab initio density matrix renormalization group method: Applicability to large- scale multireference problems for metal compounds, J. Chem. Phys., 130 (2009), 234114-1-21
[19] Yamada, S.; Okumura, M.; Machida, M., Direct extension of density-matrix renormalization group to two-dimensional quantum lattice systems: Studies of parallel algorithm, accuracy, and performance, J. Phys. Soc. Japan, 78 (2009), 094004-1-5
[20] Rincón, J.; García, D. J.; Hallberg, K., Improved parallelization techniques for the density matrix renormalization group, Comput. Phys. Comm., 181, 1346-1351 (2010) · Zbl 1222.82043
[21] Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H., J. Am Chem. Soc., 130, 3296 (2008)
[22] Wang, C.; Li, L.; Chi, S.; Zhu, Z.; Ren, Z.; Li, Y.; Wang, Y.; Lin, X.; Luo, Y.; Jiang, S.; Xu, X.; Cao, G.; Xu, Z., Europhys. Lett., 83, 67006 (2008)
[23] Yildirim, T., Phys. Rev. Lett., 102, 037003 (2009)
[24] Moreo, A.; Daghofer, M.; Dagotto, E., Phys. Rev. B, 79, 104510 (2008)
[25] Xavier, J. C.; Alvarez, G.; Moreo, A.; Dagotto, E., Phys. Rev. B, 81, 085106 (2010)
[26] Berg, E.; Kivelson, S. A.; Scalapino, D. J., Phys. Rev. B, 81, 172504 (2010)
[27] Alexandrescu, A., Modern C++ Design (2001), Addison-Wesley: Addison-Wesley Boston
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.