×

Continuous/discontinuous Galerkin methods applied to elasticity problems. (English) Zbl 1296.74110

Summary: A new family of coupled continuous-discontinuous Galerkin formulations is presented and analyzed in this paper. These formulations have some distinguishing properties: support to all boundary conditions, without differentiating whether the condition is Dirichlet or not; the continuous part of the formulations can use the discontinuous part to have better accuracy and robustness properties and the discontinuous part has the same stabilized properties of common discontinuous Galerkin methods. A new promising stability parameter is introduced and its effects analyzed in the numerical experiments. Some important results related to the stability of the formulations associated with the polynomial degree adopted for the continuous component are also shown.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
Full Text: DOI

References:

[2] Douglas, J.; Dupont, T., Interior penalty procedures for elliptic and parabolic Galerkin methods, Lect. Notes Phys., 58, 207-216 (1976)
[3] Baker, G. A., Finite element methods for elliptic equations using nonconforming elements, Math. Comput., 31, 45-59 (1977) · Zbl 0364.65085
[4] Wheeler, M. F., An elliptic collocation finite element method with interior penalties, SIAM J. Numer. Anal., 15, 152-161 (1978) · Zbl 0384.65058
[5] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 742-760 (1982) · Zbl 0482.65060
[6] (Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin Methods: Theory, Computation and Applications. Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11 (2000), Springer-Verlag) · Zbl 0935.00043
[7] Oden, J. T.; Babuska, I.; Baumann, C. E., A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., 146, 491-519 (1998) · Zbl 0926.65109
[8] Duarte, A. V.C.; Rochinha, F. A.; do Carmo, E. G. Dutra, Discontinuous finite element formulations applied to cracked elastic domains, Comput. Methods Appl. Mech. Eng., 185, 21-36 (2000) · Zbl 0965.74062
[9] do Carmo, E. G. Dutra; Duarte, A. V.C., A discontinuous finite element-based domain decomposition method, Comput. Methods Appl. Mech. Eng., 190, 825-843 (2000) · Zbl 0971.74071
[10] Dawson, C.; Proft, J., Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations, Comput. Methods Appl. Mech. Eng., 191, 4721-4746 (2002) · Zbl 1015.76046
[11] Alvarez, G. B.; Loula, A. F.D.; do Carmo, E. G. Dutra; Rochinha, F. A., A discontinuous finite element formulation for Helmholtz equation, Comput. Methods Appl. Eng., 195, 4018-4035 (2006) · Zbl 1123.65113
[12] Nguyen, N.; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations, J. Comput. Phys., 228, 8841-8855 (2009) · Zbl 1177.65150
[13] Liu, R.; Wheeler, M. F.; Dawson, C. N.; Dean, R. H., A fast convergent rate preserving discontinuous Galerkin framework for rate-independent plasticity problems, Comput. Methods Appl. Eng., 199, 3213-3226 (2010) · Zbl 1225.74096
[14] Duarte, A. V.C.; do Carmo, E. G. Dutra; Rochinha, F. A., Consistent discontinuous finite elements in elastodynamics, Comput. Methods Appl. Mech. Eng., 190, 193-223 (2000) · Zbl 1005.74029
[15] do Carmo, E. G. Dutra; Duarte, A. V.C., New formulations and numerical analysis of discontinuous Galerkin methods, Comput. Appl. Math., 21, 661-715 (2002) · Zbl 1156.65319
[16] Hansbo, P.; Larson, M. G., Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitscheś method, Comput. Methods Appl. Mech. Eng., 191, 1895-1908 (2002) · Zbl 1098.74693
[17] Engel, G.; Garikipati, K.; Hughes, T. J.R.; Larson, M. G.; Mazzei, L.; Taylor, R. L., Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Eng., 191, 3669-3750 (2002) · Zbl 1086.74038
[18] Rivière, B.; Shaw, S.; Wheeler, M. F.; Whiteman, J. R., Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity, Numer. Math., 95, 347-376 (2003) · Zbl 1253.74114
[19] Wihler, T. P., Locking-free DGFEM for elasticity problems in polygons, IMA J. Numer. Anal., 24, 45-75 (2004) · Zbl 1057.74046
[20] Cockburn, B.; Schötzau, D.; Wang, J., Discontinuous Galerkin methods for incompressible elastic materials, Comput. Methods Appl. Mech. Eng., 195, 3184-3204 (2006) · Zbl 1128.74041
[21] Liu, R.; Wheeler, M. F.; Dawson, C. N., A three-dimensional nodal-based implementation of a family of discontinuous Galerkin methods for elasticity problems, Comput. Struct., 87, 141-150 (2009)
[22] Bramwell, J.; Demkowicz, L.; Gopalakrishnam, J.; Qiu, W., A locking-free hp DPG method for linear elasticity with symmetric stresses, Numer. Math., 122, 671-707 (2012) · Zbl 1283.74094
[23] Di Pietro, D. A.; Nicaise, S., A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media, Appl. Numer. Math., 63, 105-116 (2013) · Zbl 1396.74094
[24] Güzey, S.; Cockburn, B.; Stolarski, H. K., The embedded discontinuous Galerkin method: application to linear shell problems, Int. J. Numer. Methods Engng., 70, 757-790 (2007) · Zbl 1194.74403
[25] Cockburn, B.; Guzmán, J.; Soon, S.-C.; Stolarski, H. K., An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems, SIAM J. Numer. Anal., 47, 2686-2707 (2009) · Zbl 1211.65153
[26] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 1319-1365 (2009) · Zbl 1205.65312
[27] Cockburn, B.; Dong, B.; Guzmán, J., A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems, Math. Comput., 77, 1887-1916 (2008) · Zbl 1198.65193
[28] Cockburn, B.; Gopalakrishnan, J.; Sayas, F.-J., A projection-based error analysis of HDG methods, Math. Comput., 79, 1351-1367 (2010) · Zbl 1197.65173
[29] Hughes, T. J.R.; Scovazzi, G.; Bochev, P. B.; Buffa, A., A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method, Comput. Methods Appl. Mech. Eng., 195, 2761-2787 (2006) · Zbl 1124.76027
[30] Buffa, A.; Hughes, T. J.R.; Sangalli, G., Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems, SIAM J. Numer. Anal., 44, 1420-1440 (2006) · Zbl 1153.76038
[31] Labeur, R. J.; Wells, G. N., A Galerkin interface stabilisation method for the advection and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 196, 4985-5000 (2007) · Zbl 1173.76344
[32] Wells, G. N., Analysis of an interface stabilized finite element method: the advection-diffusion-reaction equation, SIAM J. Numer. Anal., 49, 87-109 (2011) · Zbl 1226.65097
[34] Arruda, N. C.B.; Loula, A. F.D.; Almeida, R. C., Locally discontinuous but globally continuous Galerkin methods for elliptic problems, Comput. Methods Appl. Mech. Eng., 255, 104-120 (2013) · Zbl 1297.65143
[35] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0314.46030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.