×

A numerical solution of a two-dimensional IHCP. (English) Zbl 1296.65125

Authors’ abstract: We will first study the existence and uniqueness of the solution of a two-dimensional inverse heat conduction problem (IHCP) which is severely ill-posed, i.e., the solution does not depend continuously on the data. We propose a stable numerical approach based on the finite difference method and the least squares scheme to solve this problem in the presence of noisy data. We prove the convergence of the numerical solution, then, to regularize the resultant ill-conditioned linear system of equations, we apply the Tikhonov regularization 0th, 1st and 2nd method to obtain the stable numerical approximation to the solution. The stability and accuracy of the scheme presented is evaluated by comparison with the singular value decomposition method.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Abtahi, M., Pourgholi, R., Shidfar, A.: Existence and uniqueness of solution for a two dimensional nonlinear inverse diffusion problem. Nonlinear Anal. 74, 2462–2467 (2011) · Zbl 1209.35147 · doi:10.1016/j.na.2010.12.001
[2] Alifanov, O.M.: Inverse Heat Transfer Problems. Springer, New York (1994) · Zbl 0979.80003
[3] Beck, J.V., Blackwell, B., Clair, C.R.St.: Inverse Heat Conduction: Ill-Posed Problems. Wiley-Interscience, New York (1985) · Zbl 0633.73120
[4] Beck, J.V., Blackwell, B., Haji-Sheikh, A.: Comparison of some inverse heat conduction methods using experimental data. Int. J. Heat Mass Transf. 3, 3649–3657 (1996) · doi:10.1016/0017-9310(96)00034-8
[5] Boumenir, A., Tuan, V.K.: An inverse problem for the heat equation. Proc. Am. Math. Soc. 138, 3911–3921 (2010) · Zbl 1202.35344 · doi:10.1090/S0002-9939-2010-10297-6
[6] Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004) · Zbl 1059.65122
[7] Bryan, K., Caudill, L.F.: Uniqueness for a boundary identification problem in thermal imaging. Electron. J. Differ. Equ. C 1, 23–39 (1997) · Zbl 0911.35117
[8] Bryan, K., Caudill, L.F.: Stability and reconstruction for an inverse problem for the heat equation. Inverse Probl. 14, 1429–1453 (1998) · Zbl 0914.35152 · doi:10.1088/0266-5611/14/6/005
[9] Cabeza, J.M.G., Garcia, J.A.M., Rodriguez, A.C.: A sequential algorithm of inverse heat conduction problems using singular value decomposition. Int. J. Therm. Sci. 44, 235–244 (2005) · doi:10.1016/j.ijthermalsci.2004.06.009
[10] Cannon, J.R.: The One-Dimensional Heat Equation. Addison-Wesley, Reading (1984) · Zbl 0567.35001
[11] Chapko, R., Kress, R., Yoon, J.R.: On the numerical solution of an inverse boundary value problem for the heat equation. Inverse Probl. 14, 853–867 (1998) · Zbl 0917.35157 · doi:10.1088/0266-5611/14/4/006
[12] Chen, H.T., Lin, J.Y.: Analysis of two-dimensional hyperbolic heat conduction problems. Int. J. Heat Mass Transf. 37, 153–164 (1993–1994) · Zbl 0803.73075
[13] Ching-Yu, Y.: Direct and inverse solutions of the two-dimensional hyperbolic heat conduction problems. Appl. Math. Model. 33, 2907–2918 (2009) · Zbl 1205.80072 · doi:10.1016/j.apm.2008.10.001
[14] Elden, L.: A note on the computation of the generalized cross-validation function for ill-conditioned least squares problems. BIT 24, 467–472 (1984) · Zbl 0554.65029 · doi:10.1007/BF01934905
[15] Emamizadeh, B.: An inverse heat equation in two space dimensions. Appl. Math. Lett. 17, 1161–1165 (2004) · Zbl 1072.35200 · doi:10.1016/j.aml.2003.09.009
[16] Fritz, J.: Partial Differential Equations. Springer, New York (1982) · Zbl 0472.35001
[17] Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979) · Zbl 0461.62059 · doi:10.1080/00401706.1979.10489751
[18] Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992) · Zbl 0770.65026 · doi:10.1137/1034115
[19] Hattori, T.: An inverse problem for one-dimensional heat equations with the Dirichlet boundary condition. J. Inverse Ill-Posed Probl. 2, 33–48 (1994) · Zbl 0816.35151 · doi:10.1515/jiip.1994.2.1.33
[20] Huang, C.-H., Tsai, Y.-L.: A transient 3-D inverse problem in imaging the time-dependent local heat transfer coefficients for plate fin. Appl. Therm. Eng. 25, 2478–2495 (2005) · doi:10.1016/j.applthermaleng.2004.12.003
[21] Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM, Philadelphia (1995). First published by Prentice-Hall (1974) · Zbl 0860.65028
[22] Lukshin, A.V., Reznik, B.I.: Unique solvability of the inverse problem for the heat equation with nonlocal boundary conditions. Math. Comput. Model. 18, 29–41 (2007) · Zbl 1111.35124 · doi:10.1007/s10598-007-0004-1
[23] Martin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X.: Dual reciprocity boundary element method solution of the Cauchy problem for Helmholtz-type equations with variable coefficients. J. Sound Vib. 297, 89–105 (2006) · Zbl 1243.74192 · doi:10.1016/j.jsv.2006.03.045
[24] Molhem, H., Pourgholi, R.: A numerical algorithm for solving a one-dimensional inverse heat conduction problem. J. Math. Stat. 4, 60–63 (2008) · Zbl 1154.80371 · doi:10.3844/jmssp.2008.60.63
[25] Murio, D.A.: The Mollification Method and the Numerical Solution of Ill-Posed Problems. Wiley-Interscience, New York (1993)
[26] Ozisik, M.N.: Heat Conduction. Wiley, New York (1993)
[27] Pourgholi, R., Azizi, N., Gasimov, Y.S., Aliev, F., Khalafi, H.K.: Removal of numerical instability in the solution of an inverse heat conduction problem. Commun. Nonlinear Sci. Numer. Simul. 14, 2664–2669 (2009) · Zbl 1221.65251 · doi:10.1016/j.cnsns.2008.08.002
[28] Pourgholi, R., Rostamian, M.: A numerical technique for solving IHCPs using Tikhonov regularization method. Appl. Math. Model. 34(8), 2102–2110 (2010) · Zbl 1193.80028 · doi:10.1016/j.apm.2009.10.022
[29] Pourgholi, R., Rostamian, M., Emamjome, M.: A numerical method for solving a nonlinear inverse parabolic problem. Inverse Probl. Sci. Eng. 18, 1151–1164 (2010) · Zbl 1207.65116 · doi:10.1080/17415977.2010.518287
[30] Reinhardt, H.-J., Dinh, N.H., Frohne, J., Suttmeier, F.-T.: Numerical solution of inverse heat conduction problems in two spatial dimensions. J. Inverse Ill-Posed Probl. 15, 181–198 (2007) · Zbl 1126.35105 · doi:10.1515/JIIP.2007.010
[31] Shidfar, A., Pourgholi, R., Ebrahimi, M.: A numerical method for solving of a nonlinear inverse diffusion problem. Comput. Math. Appl. 52, 1021–1030 (2006) · Zbl 1125.65341 · doi:10.1016/j.camwa.2006.03.026
[32] Shidfar, A., Shahrezaee, A.: Existence, uniqueness, and unstability results for an inverse heat conduction problem. Int. J. Appl. Math. 9, 253–258 (2002) · Zbl 1028.80006
[33] Su, J., Silva Neto, A.J.: Two-dimensional inverse heat conduction problems of source strength estimation in cylindrical rods. Appl. Math. Model. 25, 861–872 (2001) · Zbl 0992.80009 · doi:10.1016/S0307-904X(01)00018-X
[34] Sun, K.K., Jung, B.S., Lee, W.L.: An inverse estimation of surface temperature using the maximum entropy method. Int. Commun. Heat Mass Transf. 34, 37–44 (2007) · doi:10.1016/j.icheatmasstransfer.2006.08.011
[35] Tadi, M.: Inverse heat conduction based on boundary measurement. Inverse Probl. 13, 1585–1605 (1997). · Zbl 0889.35123 · doi:10.1088/0266-5611/13/6/012
[36] Tikhonov, A.N., Arsenin, V.Y.: On the Solution of Ill-Posed Problems. Wiley, New York (1977) · Zbl 0354.65028
[37] Tikhonov, A.N., Arsenin, V.Y.: Solution of Ill-Posed Problems. V.H. Winston, Washington (1977) · Zbl 0354.65028
[38] Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990) · Zbl 0813.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.