×

Boundary value problems on planar graphs and flat surfaces with integer cone singularities, I: The Dirichlet problem. (English) Zbl 1296.53077

J. Reine Angew. Math. 670, 65-92 (2012); addendum ibid. 713, 247-250 (2016).
Summary: Consider a planar, bounded, \(m\)-connected region \(\Omega \), and let \(\partial \Omega \) be its boundary. Let \(\mathcal T\) be a cellular decomposition of \(\Omega \cup \partial \Omega \), where each 2-cell is either a triangle or a quadrilateral. From these data and a conductance function we construct a canonical pair \(( S, f)\) where \(S\) is a genus \(( m - 1)\) singular flat surface tiled by rectangles and \(f\) is an energy preserving mapping from \(\mathcal T^{(1)}\) onto \(S\). By a singular flat surface, we will mean a surface which carries a metric structure locally modeled on the Euclidean plane, except at a finite number of points. These points have cone singularities, and the cone angle is allowed to take any positive value (see for instance [M. Troyanov, IRMA Lect. Math. Theor. Phys. 11, 507–540 (2007; Zbl 1127.32009)] for an excellent survey). Our realization may be considered as a discrete uniformization of planar bounded regions.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
32Q30 Uniformization of complex manifolds
57M50 General geometric structures on low-dimensional manifolds

Citations:

Zbl 1127.32009

References:

[1] Bancho{\currency} T., J. Di{\currency}. Geom. 1 pp 245– (1967)
[2] DOI: 10.1006/eujc.1999.0269 · Zbl 0949.05046 · doi:10.1006/eujc.1999.0269
[3] DOI: 10.1006/jfan.1999.3528 · Zbl 0958.31004 · doi:10.1006/jfan.1999.3528
[4] DOI: 10.1016/j.apnum.2004.01.010 · Zbl 1057.65070 · doi:10.1016/j.apnum.2004.01.010
[5] DOI: 10.1007/s002220050109 · Zbl 0868.31008 · doi:10.1007/s002220050109
[6] DOI: 10.1214/aop/1065725179 · Zbl 0862.60053 · doi:10.1214/aop/1065725179
[7] DOI: 10.1215/S0012-7094-40-00718-9 · Zbl 0024.16501 · doi:10.1215/S0012-7094-40-00718-9
[8] DOI: 10.1007/BF02398434 · Zbl 0832.30012 · doi:10.1007/BF02398434
[9] DOI: 10.1006/aima.1996.0006 · Zbl 0844.53029 · doi:10.1006/aima.1996.0006
[10] DOI: 10.1007/BF01444289 · JFM 34.0547.02 · doi:10.1007/BF01444289
[11] DOI: 10.1016/S0022-247X(62)80004-3 · Zbl 0107.43604 · doi:10.1016/S0022-247X(62)80004-3
[12] DOI: 10.1007/BF02546356 · Zbl 0115.31901 · doi:10.1007/BF02546356
[13] DOI: 10.1016/j.ejc.2006.10.002 · Zbl 1153.30034 · doi:10.1016/j.ejc.2006.10.002
[14] DOI: 10.1016/j.difgeo.2011.03.003 · Zbl 1252.53073 · doi:10.1016/j.difgeo.2011.03.003
[15] DOI: 10.1007/BF02780322 · Zbl 0938.60070 · doi:10.1007/BF02780322
[16] DOI: 10.1007/BF02761693 · Zbl 0788.05019 · doi:10.1007/BF02761693
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.