×

Non-autonomous honesty theory in abstract state spaces with applications to linear kinetic equations. (English) Zbl 1296.47036

Let \(\mathcal{E}\) be an ordered Banach space with additive norm on the positive cone \(\mathcal{E}_+\) (an ‘abstract state space’). Let \(\Phi\) be a positive linear functional on \(\mathcal{E}\) satisfying \(\langle \Phi, u\rangle =||u||\) for \(u\in \mathcal{E}_+\).
Let \(\left(U(t)\right)_{t\geq 0}\) be a substochastic \(C_0\)-semigroup on \(\mathcal{E}\), let \(\left(\mathcal{A}, \mathcal{D(A)}\right)\) denote the generator, and let \(\mathcal{B}:\mathcal{D(B)}\to \mathcal{E}\) be a non-negative operator with \(\mathcal{D(B)}\supseteq\mathcal{D(A)}\), satisfying the dissipativity condition \(\langle \Phi, (\mathcal{A}+\mathcal{B})u\rangle \leq 0\) for \(u\in\mathcal{D(B)}\cap \mathcal{E}_+\). According to the approach of T. Kato [J. Math. Soc. Japan 6, 1–15 (1954; Zbl 0058.10701)], it follows that there exists an extension \(\mathcal{K}\) of the sum \(\mathcal{A}+\mathcal{B}\) generating a substochastic semigroup \(\left(\mathcal{V}(t)\right)_{t\geq 0}\) which is representable by a (strongly convergent) Dyson-Phillips series representation.
In the ‘formally conservative case’, i.e., \(\langle \Phi, (\mathcal{A}+\mathcal{B})u\rangle = 0\) for \(u\in\mathcal{D(B)}\cap \mathcal{E}_+\), \(\left(\mathcal{V}(t)\right)_{t\geq 0}\) is called ‘honest’ if \(\mathcal{K} = \overline{\mathcal{A}+\mathcal{B}}\); this is the case iff \(||\mathcal{V}(t)u|| =||u||\) for all \(u\in \mathcal{E}_+\) and \(t\geq 0\).
If \(\mathcal{K}\) is a proper extension of \(\mathcal{A}+\mathcal{B}\), the definition of honesty is more involved, indeed too technical to be repeated in a review.
In the paper under review, the authors extend the theory of addition of generators and of honest semigroups to ‘evolution families’ \(\left(U(s,t)\right)_{s\leq t}\) perturbated by a measurable one-parameter family of non-negative operators \(\{\mathcal{B}(t): t\geq 0\}\), to obtain (under suitable conditions) a substochastic evolution family \(\left(V(s,t)\right)_{s\leq t}\), representable by a (modified) Dyson-Phillips series representation. Essential for the following is the well-known fact that evolution families \(\left(U(s,t)\right)_{s\leq t}\) resp. \(\left(V(s,t)\right)_{s\leq t}\) correspond to substochastic \(C_0\)-semigroups \(\left(\mathcal{T}_0(t)\right)_{t\geq 0}\) and \(\left(\mathcal{T}(t)\right)_{t\geq 0}\), respectively defined on the enlarged state space \(\mathcal{X}:=L^1(\mathbb{R}_+, \mathcal{E})\). The further investigations rely on the construction of a non-negative operator \(\widehat{\mathcal{B}}\) on \(\mathcal{X}\) such that the generator of \(\left(\mathcal{T}(t)\right)\) is an extension of the sum \(\mathcal{Z}+ \widehat{\mathcal{B}}\), \(\mathcal{Z}\) denoting the generator of the un-perturbed semigroup \(\left(\mathcal{T}_0(t)\right)\). (Technical properties are postponed to the appendix.) Thus, roughly spoken, the theory of honest evolution families (on \(\mathcal{E}\)) can be reduced to the theory of honest \(C_0\)-semigroups (on \(\mathcal{X}\)).
The theory is applied in Section 5 to linear Boltzmann equations (satisfying additional conditions as the ‘sub-critical hypothesis’ in neutron transport theory).
It could be mentioned that substochastic evolution families and perturbations are also investigated in probabilities on groups in connection with ‘convolution hemigroups’ (or distributions of additive processes) and the corresponding convolution operators. However, at least up to now, the theory of ‘honest’ hemigroups seems to be not relevant in this setup.

MSC:

47D06 One-parameter semigroups and linear evolution equations
47D03 Groups and semigroups of linear operators
47D07 Markov semigroups and applications to diffusion processes
47N50 Applications of operator theory in the physical sciences
47B60 Linear operators on ordered spaces
47B65 Positive linear operators and order-bounded operators

Citations:

Zbl 0058.10701

References:

[1] L. Arlotti, <em>The Cauchy problem for the linear Maxwell-Bolztmann equation</em>,, J. Differential Equations, 69, 166 (1987) · Zbl 0655.35068 · doi:10.1016/0022-0396(87)90115-X
[2] L. Arlotti, <em>A perturbation theorem for positive contraction semigroups on \(L^1\)-spaces with applications to transport equation and Kolmogorov’s differential equations</em>,, Acta Appl. Math., {23, 129 (1991)} · Zbl 0734.45005 · doi:10.1007/BF00048802
[3] L. Arlotti, <em>Strictly substochastic semigroups with application to conservative and shattering solution to fragmentation equation with mass loss</em>,, J. Math. Anal. Appl., {293, 673 (2004)} · Zbl 1075.47023 · doi:10.1016/j.jmaa.2004.01.028
[4] L. Arlotti, <em>Nonautonomous fragmentation equation via evolution semigroups</em>,, Math. Meth. Appl. Sci., 33, 1201 (2010) · Zbl 1213.47045 · doi:10.1002/mma.1282
[5] L. Arlotti, <em>On perturbed substochastic semigroups in abstract state spaces</em>,, Z. Anal. Anwend., 30, 457 (2011) · Zbl 1241.47037 · doi:0.4171/ZAA/1444
[6] L. Arlotti, <em>Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations</em>,, preprint (2013)
[7] J. Banasiak, <em>Around the Kato generation theorem for semigroups,</em>, Studia Math, 179, 217 (2007) · Zbl 1115.47037 · doi:10.4064/sm179-3-2
[8] J. Banasiak, <em>Positivity in natural sciences</em>,, in, 1 (2008) · Zbl 1264.92001
[9] C. J. Batty, <em>Positive one-parameter semigroups on ordered Banach spaces,</em>, Acta Appl. Math., 1, 221 (1984) · Zbl 0554.47022 · doi:10.1007/BF02280855
[10] C. Chicone, “Evolution Semigroups in Dynamical Systems and Differential Equations,”, Mathematical surveys and monographs 70 (1999) · Zbl 0970.47027
[11] E. B. Davies, “Quantum Theory of Open Systems,”, Academic Press (1976) · Zbl 0388.46044
[12] E. B. Davies, <em>Quantum dynamical semigroups and the neutron diffusion equation,</em>, Rep. Math. Phys., 11, 169 (1977) · Zbl 0372.47020 · doi:10.1016/0034-4877(77)90059-3
[13] K. J. Engel, “One-parameter Semigroups for Linear Evolution Equations,”, Springer (2000) · Zbl 0952.47036
[14] G. Frosali, <em>A characterization theorem for the evolution semigroup generated by the sum of two unbounded operators,</em>, Math. Meth. Appl. Sci., 27, 669 (2004) · Zbl 1053.47035 · doi:10.1002/mma.495
[15] A. Gulisashvili, “Non-autonomous Kato Classes and Feynman-Kac Propagators,”, World Scientific (2006) · Zbl 1113.47031
[16] T. Kato, <em>On the semi-groups generated by Kolmogoroff’s differential equations</em>,, J. Math. Soc. Jap., 6, 1 (1954) · Zbl 0058.10701 · doi:10.2969/jmsj/00610001
[17] V. Liskevich, <em>Gaussian bounds for propagators perturbed by potentials,</em>, J. Funct. Anal., 238, 245 (2006) · Zbl 1104.47043 · doi:10.1016/j.jfa.2006.04.010
[18] M. Mokhtar-Kharroubi, <em>On perturbed positive \(C_0\)-semigroups on the Banach space of trace class operators,</em>, Infinite Dim. Anal. Quant. Prob. Related Topics, 11, 1 (2008) · Zbl 1200.47055 · doi:10.1142/S0219025708003130
[19] M. Mokhtar-Kharroubi, <em>On honesty of perturbed substochastic \(C_0\)-semigroups in \(L^1\)-spaces</em>,, J. Operator Th, 64, 101 (2010) · Zbl 1212.47019
[20] M. Mokhtar-Kharroubi, <em>New generation theorems in transport theory</em>,, Afr. Mat., 22, 153 (2011) · Zbl 1268.82049 · doi:10.1007/s13370-011-0014-1
[21] S. Monniaux, <em>Semigroup methods to solve non-autonomous evolution equations</em>,, Semigroup Forum, 60, 122 (2000) · Zbl 0977.20048 · doi:10.1007/s002330010006
[22] B. de Pagter, <em>Ordered Banach spaces,</em>, in, 265 (1987)
[23] F. R <em>Perturbation and an abstract characterization of evolution semigroups</em>,, J. Math. Anal. Appl., 198, 516 (1996) · Zbl 0884.47017 · doi:10.1006/jmaa.1996.0096
[24] F. R <em>Non-autonomous Miyadera perturbations,</em>, Differential Integral Equations, 13, 341 (2000) · Zbl 0980.34056
[25] H. Thieme, <em>Stochastic semigroups: their construction by perturbation and approximation</em>,, in, 135 (2006) · Zbl 1113.47029
[26] C. van der Mee, <em>Time-dependent kinetic equations with collision terms relatively bounded with respect to the collision frequency</em>,, Transport Theory and Statistical Physics, 30, 63 (2001) · Zbl 0990.82020 · doi:10.1081/TT-100104455
[27] J. Voigt, <em>On the perturbation theory for strongly continuous semigroups</em>,, Math. Ann., 229, 163 (1977) · Zbl 0338.47018 · doi:10.1007/BF01351602
[28] J. Voigt, “Functional Analytic Treatment of the Initial Boundary Value Problem for Collisionless Gases,”, Habilitationsschrift (1981)
[29] J. Voigt, <em>On substochastic \(C_0\)-semigroups and their generators,</em>, Transp. Theory. Stat. Phys, 16, 453 (1987) · Zbl 0634.47040 · doi:10.1080/00411458708204302
[30] J. Voigt, <em>On resolvent positive operators and positive \(C_0\)-semigroups on \(AL\)-spaces,</em>, Semigroup Forum, 38, 263 (1989) · Zbl 0686.47040 · doi:10.1007/BF02573236
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.