×

On the enhancement to the Milnor number of a class of mixed polynomials. (English) Zbl 1296.14028

By definition, the enhancement to the Milnor number is an invariant of the homotopy classes of fibred links in the sphere \(S^{2n-1}\) containing either in \(\mathbb Z\) if \(n=2\) or in \(\mathbb Z/2\,\mathbb Z\) if \(n>2\) (see [W. D. Neumann and L. Rudolph, Lect. Notes Math. 1350, 109–121 (1988; Zbl 0655.57015)]). The author proves that any element of \(\mathbb Z\) and \(\mathbb Z/2\,\mathbb Z\) is realized by the enhancement to the Milnor number of the corresponding fibred link associated with a certain class of mixed polynomials, that is, convergent power series with complex coefficients of the form \(f(z,\bar z) = \sum c_{I,J}z^I{\bar z}^J,\) where \(z=(z_1,\dots, z_n),\) \(\bar z\) is the complex conjugate of \(z,\) and \(I=(i_1,\dots, i_n),\) \(J=(j_1,\dots, j_n)\) for \(n\geq 2.\)

MSC:

14J17 Singularities of surfaces or higher-dimensional varieties
37C27 Periodic orbits of vector fields and flows
58K45 Singularities of vector fields, topological aspects

Citations:

Zbl 0655.57015

References:

[1] J. L. Cisneros-Molina, Join theorem for polar weighted homogeneous singularities, In: Singularities II, (eds. J.-P. Brasselet, J. L. Cisneros-Molina, D. Massey, J. Seade and B. Teissier), Contemp, Math., 475 , Amer. Math. Soc., Providence, RI, 2008, pp.,43-59. · Zbl 1172.32008 · doi:10.1090/conm/475/09274
[2] A. H. Durfee, Fibered knots and algebraic singularities, Topology, 13 (1974), 47-59. · Zbl 0275.57007 · doi:10.1016/0040-9383(74)90037-8
[3] D. Eisenbud and W. Neumann, Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Ann. of Math. Stud., 110 , Princeton University Press, Princeton, NJ, 1985. · Zbl 0628.57002
[4] Y. Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Invent. Math., 98 (1989), 623-637. · Zbl 0684.57012 · doi:10.1007/BF01393840
[5] E. Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, In: Proceedings of the International Congress of Mathematicians. Vol.,II, Beijing, 2002, (eds. L. Tatsien), Higher Ed. Press, Beijing, 2002, pp.,405-414. · Zbl 1015.53049
[6] S.-T. Hu, Homotopy Theory, Pure Appl. Math. (Amst.), 8 , Academic Press, New York, London, 1959.
[7] M. Ishikawa, On the contact structure of a class of real analytic germs of the form \(f\bar{g}\), In: Singularities-Niigata-Toyama 2007, (eds. J.-P. Brasselet, S. Ishii, T. Suwa and M. Vaquie), Adv. Stud. Pure Math., 56 , 2009, pp.,201-223.
[8] R. Jacoby, One-parameter transformation groups of the three-sphere, Proc. Amer. Math. Soc., 7 (1956), 131-142. · Zbl 0070.40103 · doi:10.2307/2033257
[9] L. H. Kauffman and W. D. Neumann, Products of knots, branched fibrations and sums of singularities, Topology, 16 (1977), 369-393. · Zbl 0447.57012 · doi:10.1016/0040-9383(77)90042-8
[10] J. Milnor, Singular Points of Complex Hypersurfaces, Ann. Math. Stud., 61 , Princeton University Press, Princeton, NJ, 1968. · Zbl 0184.48405
[11] W. Neumann and L. Rudolph, Unfoldings in knot theory, Math. Ann., 278 (1987), 409-439. · Zbl 0675.57010 · doi:10.1007/BF01458078
[12] W. Neumann and L. Rudolph, The enhanced Milnor number in higher dimensions, In: Differential Topology, Siegen, Germany, 1987, (ed. U. Koschorke), Lecture Notes in Math., 1350 , Springer-Verlag, 1988, pp.,109-121. · Zbl 0655.57015 · doi:10.1007/BFb0081471
[13] W. Neumann and L. Rudolph, Difference index of vectorfields and the enhanced Milnor number, Topology, 29 (1990), 83-100. · Zbl 0760.57003 · doi:10.1016/0040-9383(90)90026-G
[14] M. Oka, Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J., 31 (2008), 163-182. · Zbl 1149.14031 · doi:10.2996/kmj/1214442793
[15] M. Oka, Non-degenerate mixed functions, Kodai Math. J., 33 (2010), 1-62. · Zbl 1195.14061 · doi:10.2996/kmj/1270559157
[16] A. Pichon, Real analytic germs \(f\bar{g}\) and open-book decompositions of the 3-sphere, Internat. J. Math., 16 (2005), 1-12. · Zbl 1075.14033 · doi:10.1142/S0129167X05002710
[17] A. Pichon and J. Seade, Fibred multilinks and singularities \(f\bar{g}\), Math. Ann., 342 (2008), 487-514. · Zbl 1169.32006 · doi:10.1007/s00208-008-0234-3
[18] M. A. S. Ruas, J. Seade and A. Verjovsky, On real singularities with a Milnor fibration, In: Trends in Singularities, (eds. A. Libgober and M. Tibăr), Trends Math., Birkhäuser, Basel, 2002, pp.,191-213. · Zbl 1020.32027 · doi:10.1007/978-3-0348-8161-6_9
[19] L. Rudolph, Isolated critical points of mappings from \({\mathbf R}^{4}\) to \({\mathbf R}^{2}\) and a natural splitting of the Milnor number of a classical fibered link. Part 1: Basic theory; examples, Comment. Math. Helv., 62 (1987), 630-645. · Zbl 0626.57020 · doi:10.1007/BF02564467
[20] J. Seade, Fibred links and a construction of real singularities via complex geometry, Bol. Soc. Brasil. Mat. (N.S.), 27 (1996), 199-215. · Zbl 0881.32019 · doi:10.1007/BF01259360
[21] J. Seade, On the Topology of Isolated Singularities in Analytic Spaces, Progr. Math., 241 , Birkhäuser Verlag, Basel, 2006. · Zbl 1091.32011
[22] W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc., 52 (1975), 345-347. · Zbl 0312.53028 · doi:10.2307/2040160
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.