×

Cohomology of local systems on loci of \(d\)-elliptic abelian surfaces. (English) Zbl 1296.14021

The representation of \({\text{Sp}}_{2g}\) with highest weight \(\lambda\) induces a local system \({\mathbf W}_\lambda\) on \({\mathcal A}_g\), which can then be restricted to interesting loci in \({\mathcal A}_g\). Studying the cohomology of such restrictions is then a natural thing to do, in the light of the Eichler-Shimura correspondence which, in the case \(g=1\), relates such cohomology to modular forms. This paper concentrates on the case \(g=2\) and on the loci \({\mathcal E}_d\) of abelian surfaces with a degree \(d^2\) isogeny to a product of elliptic curves, called \(d\)-elliptic abelian surfaces.
The main algebraic tool is a decomposition formula that shows how the restriction of the representation \(W_{l,m}\) of \({\text{Sp}}_4\) to the wreath product \({\text{Sp}}_2\wr\, {\mathbb S}_2=({\text{Sp}}_2\times {\text{Sp}}_2)\rtimes {\mathbb S}_2\) decomposes into irreducible representations. As this wreath product (with \(\Gamma(d)\) instead of \({\text{Sp}}_2\)) is the modular group that appears when one considers \({\mathcal E}_d\), the Eichler-Shimura theory can then be used to describe the cohomology of the restricted local system. The part coming from Eisenstein series carries no real information and one can concentrate on the rest (the cusp forms) by considering the inner cohomology, which is the image of cohomology with compact supports in ordinary cohomology. The author writes down concise formulae for this.
The case \(d=2\) is slightly special: simpler in some respects but with some additional complications caused by the presence of generic automorphisms (i.e.by the fact that the modular curve of level \(2\) must be considered as a stack). The last part of the paper is devoted to this case, and yields formulae for the compactly supported Euler characteristic, in the Grothendieck group of mixed Hodge structures, of the moduli space of \(n\)-pointed bielliptic genus \(2\) curves.

MSC:

14G35 Modular and Shimura varieties
11F23 Relations with algebraic geometry and topology
11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
11G18 Arithmetic aspects of modular and Shimura varieties
14C15 (Equivariant) Chow groups and rings; motives

References:

[1] J. Bergström, Equivariant counts of points of the moduli spaces of pointed hyperelliptic curves, Doc. Math. 14 (2009), 259-296. · Zbl 1211.14030
[2] J. Bergström, C. Faber, and G. van der Geer, Siegel modular forms of genus 2 and level 2: Cohomological computations and conjectures, Int. Math. Res. Not. 100 (2008). · Zbl 1210.11060
[3] —, Siegel modular forms of degree three and the cohomology of local systems, preprint, 2011, arXiv:
[4] J. Bergström and G. van der Geer, The Euler characteristic of local systems on the moduli of curves and abelian varieties of genus three, J. Topol. 1 (2008), 651-662. · Zbl 1156.14032 · doi:10.1112/jtopol/jtn015
[5] C. Birkenhake and H. Lange, Complex abelian varieties, Grundlehren Math. Wiss., 302, Springer-Verlag, Berlin, 2004. · Zbl 1056.14063
[6] D. Carlton, Moduli for pairs of elliptic curves with isomorphic \(N\) -torsion, Manuscripta Math. 105 (2001), 201-234. · Zbl 1019.11009 · doi:10.1007/s002290170003
[7] B. Conrad, Arithmetic moduli of generalized elliptic curves, J. Inst. Math. Jussieu 6 (2007), 209-278. · Zbl 1140.14018 · doi:10.1017/S1474748006000089
[8] P. Deligne, Formes modulaires et représentations \(\ell\) -adiques, Sém. Bourbaki 355 (1969), 139-172. · Zbl 0206.49901
[9] F. Diamond and J. Shurman, A first course in modular forms, Grad. Texts in Math., 228, Springer-Verlag, New York, 2005. · Zbl 1062.11022
[10] C. Faber and G. van der Geer, Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes, I, C. R. Math. Acad. Sci. Paris 338 (2004), 381-384. · Zbl 1062.14034 · doi:10.1016/j.crma.2003.12.026
[11] —, Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes, II, C. R. Math. Acad. Sci. Paris 338 (2004), 467-470. · Zbl 1055.14026 · doi:10.1016/j.crma.2003.12.025
[12] G. Faltings, Hodge-Tate structures and modular forms, Math. Ann. 278 (1987), 133-149. · Zbl 0646.14026 · doi:10.1007/BF01458064
[13] G. Faltings and C.-L. Chai, Degeneration of abelian varieties, Ergeb. Math. Grenzgeb. (3) 22, Springer-Verlag, Berlin, 1990. · Zbl 0744.14031
[14] G. Frey and E. Kani, Curves of genus 2 covering elliptic curves and an arithmetical application, Arithmetic algebraic geometry (Texel, 1989), Progr. Math., 89, pp. 153-176, Birkhäuser, Boston, 1991. · Zbl 0757.14015 · doi:10.1007/978-1-4612-0457-2_7
[15] W. Fulton and J. Harris, Representation theory: A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991. · Zbl 0744.22001
[16] E. Getzler, Resolving mixed Hodge modules on configuration spaces, Duke Math. J. 96 (1999), 175-203. · Zbl 0986.14005 · doi:10.1215/S0012-7094-99-09605-9
[17] —, Euler characteristics of local systems on \(M_{2},\) Compositio Math. 132 (2002), 121-135. · Zbl 1055.14027 · doi:10.1023/A:1015826400148
[18] A. Gorinov, Rational cohomology of the moduli spaces of pointed elliptic curves, preprint, 2012, \(\langle\)http://www.liv.ac.uk/\~,gorinov/\(\rangle.\)
[19] C. F. Hermann, Modulflächen quadratischer Diskriminante, Manuscripta Math. 72 (1991), 95-110. · Zbl 0749.14016 · doi:10.1007/BF02568268
[20] E. Kani, Curves of genus 2 with elliptic differentials and the height conjecture for elliptic curves, Conference on Finiteness Theorems in Number Theory, Inst. Exp. Math. Essen, 1991, preprint no. 18-1991, pp. 30-39.
[21] —, Elliptic curves on abelian surfaces, Manuscripta Math. 84 (1994), 199-223. · Zbl 0821.14023 · doi:10.1007/BF02567454
[22] A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), 419-430. · Zbl 0760.14002 · doi:10.1007/BF01231194
[23] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, 11, Iwanami Shoten, Tokyo, 1971. · Zbl 0221.10029
[24] T. van den Bogaart and B. Edixhoven, Algebraic stacks whose number of points over finite fields is a polynomial, Number fields and function fields–Two parallel worlds, Progr. Math., 239, pp. 39- 49, Birkhäuser, Boston, 2005. · Zbl 1105.14025 · doi:10.1007/0-8176-4447-4_2
[25] G. van der Geer, Hilbert modular surfaces, Ergeb. Math. Grenzgeb. (3), 16, Springer-Verlag, Berlin, 1988. · Zbl 0634.14022
[26] J.-L. Verdier, Sur les intégrales attachées aux formes automorphes (d’après Goro Shimura), Sém. Bourbaki 216 (1995), 149-175.
[27] J. Weinstein, Automorphic representations with local constraints, Ph.D. thesis, University of California, Berkeley, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.