×

Upper bounds for the number of number fields with alternating Galois group. (English) Zbl 1296.11145

Summary: Let \( N(n,A_n,X)\) be the number of number fields of degree \(n\) whose Galois closure has Galois group \(A_n\) and whose discriminant is bounded by \(X\). By a conjecture of G. Malle [J. Number Theory 92, 315–322 (2002; Zbl 1022.11058), we expect that \[ N(n, A_n, X)\sim C_n\cdot X^{\frac {1}{2}} \cdot (\log X)^{b_n} \] for constants \( b_n\) and \( C_n\). For \( 6 \leq n \leq 84393\), the best known upper bound is \[ N(n, A_n, X) \ll X^{\frac {n + 2}{4}}, \] by Schmidt’s theorem [W. M. Schmidt [Columbia University number theory seminar, New York, 1992. Astérisque 228, 189–195 (1995; Zbl 0827.11069)], which implies there are \( \ll X^{\frac {n + 2}{4}}\) number fields of degree \(n\). (For \( n > 84393\), there are better bounds due to J. S. Ellenberg and A. Venkatesh [Ann. Math. (2) 163, No. 2, 723–741 (2006; Zbl 1099.11068)].) We show, using the important work of J. Pila [Int. Math. Res. Not. 1996, No. 18, 903–912 (1996; Zbl 0973.11085)] on counting integral points on curves, that \[ N(n, A_n, X) \ll X^{\frac {n^2 - 2}{4(n - 1)}+\varepsilon }, \] thereby improving the best previous exponent by approximately \( \frac {1}{4}\) for \( 6 \leq n \leq 84393\).

MSC:

11R32 Galois theory
11R47 Other analytic theory
11G05 Elliptic curves over global fields

References:

[1] Manjul Bhargava, The density of discriminants of quartic rings and fields, Ann. of Math. (2) 162 (2005), no. 2, 1031 – 1063. · Zbl 1159.11045 · doi:10.4007/annals.2005.162.1031
[2] Manjul Bhargava, The density of discriminants of quintic rings and fields, Ann. of Math. (2) 172 (2010), no. 3, 1559 – 1591. · Zbl 1220.11139 · doi:10.4007/annals.2010.172.1559
[3] Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier, A survey of discriminant counting, Algorithmic number theory (Sydney, 2002) Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 80 – 94. · Zbl 1058.11076 · doi:10.1007/3-540-45455-1_7
[4] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1551, 405 – 420. · Zbl 0212.08101 · doi:10.1098/rspa.1971.0075
[5] Jordan S. Ellenberg and Akshay Venkatesh, The number of extensions of a number field with fixed degree and bounded discriminant, Ann. of Math. (2) 163 (2006), no. 2, 723 – 741. · Zbl 1099.11068 · doi:10.4007/annals.2006.163.723
[6] Gunter Malle, On the distribution of Galois groups, J. Number Theory 92 (2002), no. 2, 315 – 329. · Zbl 1022.11058 · doi:10.1006/jnth.2001.2713
[7] J. Pila, Density of integer points on plane algebraic curves, Internat. Math. Res. Notices 18 (1996), 903 – 912. · Zbl 0973.11085 · doi:10.1155/S1073792896000554
[8] Wolfgang M. Schmidt, Number fields of given degree and bounded discriminant, Astérisque 228 (1995), 4, 189 – 195. Columbia University Number Theory Seminar (New York, 1992). · Zbl 0827.11069
[9] David J. Wright, Distribution of discriminants of abelian extensions, Proc. London Math. Soc. (3) 58 (1989), no. 1, 17 – 50. · Zbl 0628.12006 · doi:10.1112/plms/s3-58.1.17
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.