×

Quantum McKay correspondence and global dimensions for fusion and module-categories associated with Lie groups. (English) Zbl 1295.81091

Summary: Global dimensions for fusion categories \(\mathcal{A}_k(G)\) defined by a pair \((G,k)\), where \(G\) is a Lie group and \(k\) a positive integer, are expressed in terms of Lie quantum superfactorial functions. The global dimension is defined as the square sum of quantum dimensions of simple objects, for the category of integrable modules over an affine Lie algebra at some level. The same quantities can also be defined from the theory of quantum groups at roots of unity or from conformal field theory WZW models. Similar results are also presented for those associated module-categories that can be obtained via conformal embeddings (they are “quantum subgroups” of a particular kind). As a side result, we express the classical (or quantum) Weyl denominator of simple Lie groups in terms of classical (or quantum) factorials calculated for the exponents of the group. Some calculations use the correspondence existing between periodic quivers for simply-laced Lie groups and fusion rules for module-categories associated with \(\mathcal{A}_k(\mathrm{SU}(2))\).

MSC:

81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
33E99 Other special functions
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Software:

OEIS; Mathematica

References:

[1] Bais, F.; Bouwknegt, P., A classification of subgroup truncations of the bosonic string, Nuclear Phys. B, 279, 561 (1987)
[2] Cappelli, A.; Itzykson, C.; Zuber, J.-B., The ADE classification of minimal and \(A_1^{(1)}\) conformal invariant theories, Comm. Math. Phys., 13, 1-26 (1987) · Zbl 0639.17008
[3] Bourbaki, N., Groupes et Algèbres de Lie, vols. IV, V, VI (1968), Hermann: Hermann Paris · Zbl 0186.33001
[4] Coquereaux, R., Global dimensions for Lie groups at level \(k\) and their conformally exceptional quantum subgroups, Rev. Un. Mat. Argentina, 51, 2, 17-42 (2010) · Zbl 1222.81254
[5] Conway, J.; Sloane, N. J.A., Sphere Packings, Lattices and Groups (1999), Springer · Zbl 0915.52003
[6] Di Francesco, P.; Matthieu, P.; Senechal, D., Conformal Field Theory (1997), Springer · Zbl 0869.53052
[7] Dorey, P., Partition functions, intertwiners and the Coxeter element, Internat. J. Modern Phys. A, 8, 193-208 (1993) · Zbl 0797.17022
[8] Finkelberg, M., An equivalence of fusion categories, Geom. Funct. Anal., 6, 249-267 (1996) · Zbl 0860.17040
[9] Hurwitz, A., Über endliche Gruppen, welche in der Theorie der elliptschen Transzendenten auftreten, Math. Ann., 27, 183-233 (1886) · JFM 19.0472.01
[10] Jimbo, M.; Miwa, T., A duality of branching rules for affine Lie algebras, Adv. Stud. Pure Math., 6, 17 (1985) · Zbl 0579.17009
[11] Kac, V., Infinite Dimensional Lie Algebras (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0716.17022
[12] Kac, V.; Peterson, D., Infinite dimensional Lie algebras, theta functions, and modular forms, Adv. Math., 53, 125-264 (1984) · Zbl 0584.17007
[13] Kac, V.; Wakimoto, M., Modular and conformal invariance constraints in representation theory of affine algebras, Adv. Math., 70, 156 (1988) · Zbl 0661.17016
[14] Kazhdan, D.; Lusztig, G., Tensor structures arising from affine Lie algebras, III, J. Amer. Math. Soc., 7, 335-381 (1994) · Zbl 0802.17007
[15] Kirillov, A.; Ostrik, V., On \(q\)-analog of McKay correspondence and ADE classification of SL2 conformal field theories, Adv. Math., 171, 2, 183-227 (2002) · Zbl 1024.17013
[16] Kirillov, A.; Thind, J., Coxeter elements and periodic Auslander-Reiten quiver, J. Algebra, 323, 5, 1241-1265 (2010) · Zbl 1231.20035
[17] Kostant, B., The principal three-dimensional subgroup and the Bette numbers of a complex simple Lie group, Amer. J. Math., 81, 973-1032 (1959) · Zbl 0099.25603
[20] Ocneanu, A., Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors, (Rajarama Bhat, B. V.; Elliot, G. A.; Filmore, P. A., Lectures on Operator Theory, Notes by S. Goto. Lectures on Operator Theory, Notes by S. Goto, Fields Inst. Monogr., vol. 13 (1999))
[21] Ocneanu, A., The classification of subgroups of quantum \(SU(N)\), (Coquereaux, R.; García, A.; Trinchero, R., Quantum Symmetries in Theoretical Physics and Mathematics. Quantum Symmetries in Theoretical Physics and Mathematics, Bariloche 2000. Quantum Symmetries in Theoretical Physics and Mathematics. Quantum Symmetries in Theoretical Physics and Mathematics, Bariloche 2000, Contemp. Math., vol. 294 (2000)), 133-159 · Zbl 1193.81055
[22] Ocneanu, A., Higher Coxeter systems (2000)
[23] Ostrik, V., Module categories, weak Hopf algebras and modular invariants, Transform. Groups, 8, 2, 177-206 (2003) · Zbl 1044.18004
[24] Schellekens, A. N.; Warner, N. P., Conformal subalgebras of Kac-Moody algebras, Phys. Rev. D, 34-10, 3092-3096 (1986)
[25] Sloane, N. J.A., The On-Line Encyclopedia of Integer Sequences · Zbl 1044.11108
[26] Sloane, N. J.A.; Plouffe, S., The Encyclopedia of Integer Sequences (1995), Academic Press · Zbl 0845.11001
[27] Steinberg, R., Finite reflection groups, Trans. Amer. Math. Soc., 91, 493-504 (1959) · Zbl 0092.13904
[28] Verlinde, E., Fusion rules and modular transformations in 2-D conformal field theory, Nuclear Phys. B, 300, 360-376 (1988) · Zbl 1180.81120
[29] Weisstein, Eric W., Barnes G-function, from MathWorld—A Wolfram Web Resource
[30] Witten, E., Quantum field theory and the Jones polynomial, Comm. Math. Phys., 121, 351 (1989) · Zbl 0667.57005
[31] Zuber, J.-B., CFT, BCFT, ADE and all that, (Coquereaux, R.; García, A.; Trinchero, R., Quantum Symmetries in Theoretical Physics and Mathematics. Quantum Symmetries in Theoretical Physics and Mathematics, Bariloche 2000. Quantum Symmetries in Theoretical Physics and Mathematics. Quantum Symmetries in Theoretical Physics and Mathematics, Bariloche 2000, Contemp. Math., vol. 294 (2000)), 233-266 · Zbl 1213.81203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.