×

Polynomial-time homology for simplicial Eilenberg-MacLane spaces. (English) Zbl 1295.68201

In an earlier paper [M. Čadek et al., “Computing all maps into a sphere”, Preprint, arXiv:1105.6257], the authors and their coauthors have developed an algorithm for a problem in computational algebraic topology to compute the set (or group) \([X,Y]\) of all homotopy classes of continuous maps from \(X\) to \(Y\).
A simplicial set \(X\) parameterized by a set \(\mathcal I\) is equipped with polynomial-time homology if (1) \(X\) is locally polynomial-time; (2) there is a locally polynomial-time chain complex \(EC_*\) such that, for each fixed \(k\), the distinguished basis \(B(I)_k\) of \(EC(I)_k\) can be computed in time polynomial in \(\mathrm{size}(I)\), the number of bits in the encoding, and the rank \(r(I)_k\) is bounded by such a polynomial; and (3) for every \(I \in \mathcal I\), there is a reduction (a contraction in the sense of S. Eilenberg and S. MacLane [Ann. Math. (2) 58, 55–106 (1953; Zbl 0050.39304)]) \(\rho_I = (f_I, g_I, h_I)\) from \(C_*(X(I))\) to \(EC(I)_*\), where the maps \((f_I)k, (g_I)_k\) and \((h_I)_k\) of \(\rho_I\) are all computable in time bounded by a polynomial in \(\mathrm{size}(I)\) plus the size of the input \(k\)-chain.
In the present paper, the authors construct a suitable discrete vector field, in the sense of Forman’s discrete Morse theory, on the Eilenberg-MacLane space \(K(\mathbb{Z},1)\), which is homotopy equivalent to the unit circle \(S^1\). The construction here is purely combinatorial. The authors show that the Eilenberg-MacLane space \(K(\mathbb{Z},1)\), represented as a simplicial group, can be equipped with polynomial-time homology. They prove that if the dimensions of a locally polynomial-time simplicial set \(X\) are bounded by a constant, then \(X\) can be turned into a simplicial set with polynomial-time homology. The paper is well written and organized.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
55S45 Postnikov systems, \(k\)-invariants
55S37 Classification of mappings in algebraic topology

Citations:

Zbl 0050.39304

Software:

fKenzo

References:

[1] Anick, D. J., The computation of rational homotopy groups is #℘-hard, Proc. Conf. Chicago/Ill., 1986 · Zbl 0691.55009
[2] M. Čadek, M. Krčál, J. Matoušek, F. Sergeraert, L. Vokřínek, U. Wagner, Computing all maps into a sphere. Preprint arXiv:1105.6257 (2011). Extended abstract in Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA 2012). · Zbl 1421.68162
[3] M. Čadek, M. Krčál, J. Matoušek, L. Vokřínek, U. Wagner, Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension. Preprint arXiv:1211.3093 (2012). · Zbl 1320.68099
[4] M. Čadek, M. Krčál, J. Matoušek, L. Vokřínek, U. Wagner, Extendability of continuous maps is undecidable. Preprint arXiv:1302.2370 (2013). · Zbl 1358.68297
[5] H. Cartan, Algèbres d’Eilenberg-MacLane et homotopie. Exposés 2 à 16, Séminaire Henri Cartan (École Normale Supérieure, Paris, 1956).
[6] A. Clément, Integral cohomology of finite Postnikov towers. Doctoral Thesis, Univ. de Lausanne, 2002. · Zbl 1132.55008
[7] E.B. Curtis, Simplicial homotopy theory, Adv. Math.6, 107-209 (1971). · Zbl 0225.55002 · doi:10.1016/0001-8708(71)90015-6
[8] S. Eilenberg, S. Mac Lane, On the groups of H(Π,n). I, Ann. Math.58, 55-106 (1953). · Zbl 0050.39304 · doi:10.2307/1969820
[9] R. Forman, Morse theory for cell complexes, Adv. Math.134(1), 90-145 (1998). · Zbl 0896.57023 · doi:10.1006/aima.1997.1650
[10] R. Forman, A user’s guide to discrete Morse theory, Séminaire Lotharingien de Combinatoire 48 (2002). Article B48c. · Zbl 1048.57015
[11] Franek, P.; Ratschan, S.; Zgliczynski, P., Satisfiability of systems of equations of real analytic functions is quasi-decidable, No. 6907, 315-326 (2011), Berlin · Zbl 1343.03036
[12] G. Friedman, An elementary illustrated introduction to simplicial sets, Rocky Mt. J. Math.42(2), 353-423 (2012). · Zbl 1248.55001 · doi:10.1216/RMJ-2012-42-2-353
[13] P.G. Goerss, J.F. Jardine, Simplicial Homotopy Theory (Birkhäuser, Basel, 1999). · Zbl 0949.55001 · doi:10.1007/978-3-0348-8707-6
[14] J. Heras, V. Pascual, J. Rubio, F. Sergeraert, fKenzo: a user interface for computations in algebraic topology, J. Symb. Comput.46(6), 685-698 (2011). · Zbl 1211.55002 · doi:10.1016/j.jsc.2011.01.005
[15] J.P. May, Simplicial Objects in Algebraic Topology (Chicago University Press, Chicago, 1992). Reprint of the 1967 original; the page numbers do not quite agree with the 1967 edition. · Zbl 0769.55001
[16] A. Romero, J. Rubio, Computing the homology of groups: the geometric way. Preprint arXiv:1107.3396, http://arxiv.org/pdf/1107.3396v1 (2011). · Zbl 1251.20048
[17] A. Romero, F. Sergeraert, Discrete vector fields and fundamental algebraic topology. Preprint (2011) an updated version at http://www-fourier.ujf-grenoble.fr/ sergerar/Papers/. arXiv:1005.5685 · Zbl 0896.57023
[18] A. Romero, J. Rubio, F. Sergeraert, Computing spectral sequences, J. Symb. Comput.41(10), 1059-1079 (2006). · Zbl 1132.55008 · doi:10.1016/j.jsc.2006.06.002
[19] J. Rubio, F. Sergeraert, Constructive algebraic topology, Bull. Sci. Math.126(5), 389-412 (2002). · Zbl 1007.55019 · doi:10.1016/S0007-4497(02)01119-3
[20] J. Rubio, F. Sergeraert, Constructive homological algebra and applications. Preprint arXiv:1208.3816 (2012). Written in 2006 for a MAP Summer School at the University of Genova.
[21] F. Sergeraert, The computability problem in algebraic topology, Adv. Math.104(1), 1-29 (1994). · Zbl 0823.55011 · doi:10.1006/aima.1994.1018
[22] F. Sergeraert, Introduction to combinatorial homotopy theory. Available at http://www-fourier.ujf-grenoble.fr/ sergerar/Papers/. (2008).
[23] J.-P. Serre, Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv.27, 198-232 (1953). · Zbl 0052.19501 · doi:10.1007/BF02564562
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.