×

Exact sampling of self-avoiding paths via discrete Schramm-Loewner evolution. (English) Zbl 1295.60095

Summary: We present an algorithm, based on the iteration of conformal maps, that produces independent samples of self-avoiding paths in the plane. It is a discrete process approximating radial Schramm-Loewner evolution growing to infinity. We focus on the problem of reproducing the parametrization corresponding to that of lattice models, namely self-avoiding walks on the lattice, and we propose a strategy that gives rise to discrete paths where consecutive points lie an approximately constant distance apart from each other. This new method allows us to tackle two non-trivial features of self-avoiding walks that critically depend on the parametrization: the asphericity of a portion of chain and the correction-to-scaling exponent.

MSC:

60J67 Stochastic (Schramm-)Loewner evolution (SLE)

References:

[1] Des Cloizeaux, J., Jannink, G.: Polymers in Solution: Their Modelling and Structure. Oxford University Press, New York (1990)
[2] Schäfer, L.: Excluded Volume Effects in Polymer Solutions. Springer, Berlin-New York (1999) · doi:10.1007/978-3-642-60093-7
[3] Madras, N., Slade, G.: The Self-avoiding Walk. Birkhäuser, Boston (1993) · Zbl 0780.60103
[4] Guttmann, A.J., Conway, A.R.: Square lattice self-avoiding walks and polygons. Ann. Comb. 5, 319-345 (2001) · Zbl 0988.05010 · doi:10.1007/PL00013842
[5] Sokal, A.D.: Monte Carlo methods for the self-avoiding walk. Nucl. Phys. B 47, 172-179 (1996) · doi:10.1016/0920-5632(96)00042-4
[6] Janse van Rensburg, E.J.: Monte Carlo methods for the self-avoiding walk. J. Phys. A, Math. Theor. 42, 323001 (2009) · Zbl 1179.82074 · doi:10.1088/1751-8113/42/32/323001
[7] Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walks. Proc. Symp. Pure Math. 72(2), 339-364 (2004) · Zbl 1069.60089 · doi:10.1090/pspum/072.2/2112127
[8] Kennedy, T.: The length of an SLE—Monte Carlo studies. J. Stat. Phys. 128, 1263-1277 (2007) · Zbl 1206.82063 · doi:10.1007/s10955-007-9375-0
[9] Gherardi, M.: Whole-plane self-avoiding walks and radial Schramm-Loewner evolution: a numerical study. J. Stat. Phys. 136, 864-874 (2009) · Zbl 1177.82061 · doi:10.1007/s10955-009-9797-y
[10] Lawler, G.F.: Dimension and natural parametrization for SLE curves. Preprint. arXiv:0712.3263v1 [math.PR] · Zbl 1288.60098
[11] Lawler, G.F., Sheffield, S.: The natural parametrization for the Schramm-Loewner evolution. Preprint. arXiv:0906.3804v1 [math.PR] · Zbl 1234.60087
[12] Lawler, G.F.: Conformally invariant processes in the plane. In: Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence (2005) · Zbl 1074.60002
[13] Werner, W.: Random planar curves and Schramm-Loewner evolutions (Lecture notes from the 2002 Saint-Flour summer school). L. N. Math. 1840, 107-195 (2004) · Zbl 1057.60078
[14] Cardy, J.: SLE for theoretical physicists. Ann. Phys. 318, 81-118 (2005) · Zbl 1073.81068 · doi:10.1016/j.aop.2005.04.001
[15] Kager, W., Nienhuis, B.: A guide to stochastic Loewner evolution and its applications. J. Stat. Phys. 115, 1149-1229 (2004) · Zbl 1157.82327 · doi:10.1023/B:JOSS.0000028058.87266.be
[16] Bauer, M., Bernard, D.: 2D growth processes: SLE and Loewner chains. Phys. Rept. 432, 115-221 (2006) · doi:10.1016/j.physrep.2006.06.002
[17] Bauer, R.O.: Discrete Löwner evolution. Ann. Fac. Sci. Toulouse VI 12, 433-451 (2003) · Zbl 1054.60102 · doi:10.5802/afst.1056
[18] Kennedy, T.: Monte Carlo comparisons of the self-avoiding walk and SLE as parametrized curves. Preprint. arXiv:math/0612609v2 [math.PR]
[19] Witten, T.A., Sander, L.M.: Diffusion-limited aggregation: a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400-1403 (1981) · doi:10.1103/PhysRevLett.47.1400
[20] Hastings, M.B., Levitov, L.S.: Laplacian growth as one-dimensional turbulence. Physica D 116, 244-252 (1998) · Zbl 0962.76542 · doi:10.1016/S0167-2789(97)00244-3
[21] Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221-288 (2000) · Zbl 0968.60093 · doi:10.1007/BF02803524
[22] Hastings, M.B.: Exact multifractal spectra for arbitrary Laplacian random walks. Phys. Rev. Lett. 88, 055506 (2002) · doi:10.1103/PhysRevLett.88.055506
[23] Madras, N., Sokal, A.D.: The pivot algorithm: a highly efficient Monte Carlo method for the self-avoiding walk. J. Stat. Phys. 50, 109-186 (1988) · Zbl 1084.82503 · doi:10.1007/BF01022990
[24] Kennedy, T.: A Faster implementation of the pivot algorithm for self-avoiding walks. J. Stat. Phys. 106, 407-429 (2002) · Zbl 1001.82061 · doi:10.1023/A:1013750203191
[25] Saleur, H.: Conformal invariance for polymers and percolation. J. Phys. A, Math. Gen. 20 (1987)
[26] Caracciolo, S., Guttmann, A.J., Jensen, I., Pelissetto, A., Rogers, A.N., Sokal, A.D.: Correction-to-scaling exponents for two-dimensional self-avoiding walks. J. Stat. Phys. 120, 1037-1100 (2005) · Zbl 1093.82008 · doi:10.1007/s10955-005-7004-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.