×

Group divisible designs with block sizes from \(K_{1(3)}\) and Kirkman frames of type \(h^u m^1\). (English) Zbl 1295.05064

Summary: Non-uniform group divisible designs (GDDs) and non-uniform Kirkman frames are useful in the constructions for other types of designs. In this paper, we consider the existence problems for \(K_{1(3)}\)-GDDs of type \(g^u m^1\) with \(K_{1(3)}=\{k : k \equiv 1 \bmod 3 \}\) and Kirkman frames of type \(h^u m^1\). First, we determine completely the spectrum for uniform \(K_{1(3)}\)-GDDs of type \(g^u\). Then, we consider the entire existence problem for non-uniform \(K_{1(3)}\)-GDDs of type \(g^u m^1\) with \(m > 0\). We show that, for each given \(g\), up to a small number of undetermined cases of \(u\), the necessary conditions on \((u, m)\) for the existence of a \(K_{1(3)}\)-GDD of type \(g^u m^1\) are also sufficient, except possibly when \(u \equiv 2 \bmod 4\) for \(g \equiv 3 \bmod 6\) and when \(u \equiv 6 \bmod 12\) for \(g \equiv 1, 5 \bmod 6\). Finally, a similar result for Kirkman frames of type \(h^u m^1\) is obtained. We show that, for each given \(h\), up to a small number of undetermined cases of \(u\), the necessary conditions on \((u, m)\) for the existence of a Kirkman frame of type \(h^u m^1\) are also sufficient, except possibly when \(u \equiv 2 \bmod 4\) for \(h \equiv 6 \bmod 12\) and when \(u \equiv 6 \bmod 12\) for \(h \equiv 2, 10 \bmod 12\).

MSC:

05B05 Combinatorial aspects of block designs
05B30 Other designs, configurations
Full Text: DOI

References:

[1] Abel, R. J.R.; Bennett, F. E.; Greig, M., PBD-closure, (Colbourn, C. J.; Dinitz, J. H., The CRC Handbook of Combinatorial Designs (2006), CRC Press: CRC Press Boca Raton, FL), 247-255
[2] Abel, R. J.R.; Colbourn, C. J.; Dinitz, J. H., Mutually orthogonal Latin squares (MOLS), (Colbourn, C. J.; Dinitz, J. H., The CRC Handbook of Combinatorial Designs (2006), CRC Press: CRC Press Boca Raton, FL), 160-193
[3] Assaf, A.; Wei, R., Modified group divisible designs with block size 4 and \(\lambda = 1\), Discrete Math., 195, 15-25 (1999) · Zbl 0930.05011
[4] Beth, T.; Jungnickel, D.; Lenz, H., Design Theory (1985), Bibliographisches Institut: Bibliographisches Institut Zurich · Zbl 0569.05002
[5] Cao, H.; Wang, L.; Wei, R., The existence of HGDDs with block size four and its application to double frames, Discrete Math., 309, 945-949 (2009) · Zbl 1162.05007
[6] Chang, Y.; Miao, Y., General constructions for double group divisible designs and double frames, Des. Codes Cryptogr., 26, 155-168 (2002) · Zbl 0992.05020
[7] (Colbourn, C. J.; Dinitz, J. H., CRC Handbook of Combinatorial Designs (1996), CRC Press: CRC Press Boca Raton, FL) · Zbl 0836.00010
[8] Ge, G., Group divisible designs, (Colbourn, C. J.; Dinitz, J. H., The CRC Handbook of Combinatorial Designs (2006), CRC Press: CRC Press Boca Raton, FL), 255-261
[9] Ge, G.; Ling, A. C.H., Group divisible designs with block size four and group type \(g^u m^1\) with small \(g\), Discrete Math., 285, 97-120 (2004) · Zbl 1044.05017
[10] Ge, G.; Ling, A. C.H., Group divisible designs with block size four and group type \(g^u m^1\) with minimum \(m\), Des. Codes Cryptogr., 34, 117-126 (2005) · Zbl 1056.05016
[11] Ge, G.; Rees, R. S., On group-divisible designs with block size four and group-type \(g^u m^1\), Des. Codes Cryptogr., 27, 5-24 (2002) · Zbl 1007.05023
[12] Ge, G.; Rees, R. S., On group-divisible designs with block size four and group-type \(6^u m^1\), Discrete Math., 279, 247-265 (2004) · Zbl 1045.05012
[13] Ge, G.; Rees, R. S.; Shalaby, N., Kirkman frames having hole type \(h^u m^1\) for small \(h\), Des. Codes Cryptogr., 45, 157-184 (2007) · Zbl 1185.05019
[14] Ge, G.; Rees, R. S.; Zhu, L., Group-divisible designs with block size four and group-type \(g^u m^1\) with \(m\) as large or as small as possible, J. Comb. Theory Ser. A, 98, 357-376 (2002) · Zbl 1003.05014
[15] Ge, G.; Wang, J.; Wei, R., MGDD with block size 4 and its application to sampling designs, Discrete Math., 272, 277-283 (2003) · Zbl 1028.05012
[16] Ge, G.; Wei, R., HGDDs with block size four, Discrete Math., 279, 267-276 (2004) · Zbl 1034.05007
[17] Grüttmüller, M.; Rees, R. S., Mandatory representation designs MRD \((4, k; v)\) with \(k \equiv 1 \operatorname{mod} 3\), Util. Math., 60, 153-180 (2001) · Zbl 1011.05013
[18] Ling, A. C.H.; Colbourn, C. J., Modified group divisible designs with block size four, Discrete Math., 219, 207-221 (2000) · Zbl 0957.05013
[19] MacNeish, H. F., Euler squares, Ann. Math., 23, 221-227 (1922) · JFM 48.0071.02
[20] Rees, R. S.; Stinson, D. R., Kirkman triple systems with maximum subsystems, Ars Combin., 25, 125-132 (1988) · Zbl 0679.05011
[21] Rees, R. S.; Stinson, D. R., On combinatorial designs with subdesigns, Discrete Math., 77, 259-279 (1989) · Zbl 0694.05010
[22] Schuster, E., Group divisible designs with block size four and group type \(g^u m^1\) where \(g\) is a multiple of 8, Discrete Math., 310, 2258-2270 (2010) · Zbl 1209.05025
[23] Stinson, D. R., Frames for Kirkman triple systems, Discrete Math., 65, 289-300 (1987) · Zbl 0651.05015
[24] Wang, J.; Shen, H., Existence of \((v, K_{1(3)} \cup \{w^\ast \})\)-PBDs and its applications, Des. Codes Cryptogr., 46, 1-16 (2008) · Zbl 1179.05017
[25] Wang, C.; Tang, Y.; Danziger, P., Resolvable modified group divisible designs with block size three, J. Combin. Des., 15, 1, 2-14 (2007) · Zbl 1109.05026
[26] Wei, H.; Ge, G., Kirkman frames having hole type \(h^u m^1\) for \(h \equiv 0 \operatorname{mod} 12\), Des. Codes Cryptogr. (2012), in press
[27] Wei, H.; Ge, G., Group divisible designs with block size four and group type \(g^u m^1\) for \(g \equiv 0 \operatorname{mod} 6\), J. Combin. Des., 22, 26-52 (2014) · Zbl 1316.05014
[28] Wei, H.; Ge, G., Group divisible designs with block size four and group type \(g^u m^1\) for more small \(g\), Discrete Math., 313, 2065-2083 (2013) · Zbl 1281.05036
[29] Wei, H.; Ge, G., Group divisible designs with block size four and group type \(g^u m^1\), Des. Codes Cryptogr. (2013), in press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.