×

Improved modal truncation method for eigensensitivity analysis of asymmetric matrix with repeated eigenvalues. (English) Zbl 1294.74039

Summary: An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an asymmetric and non-defective matrix with repeated eigenvalues. If the different eigenvalues \(\lambda_1\), \(\lambda_2,\dots,\lambda_r\) of the matrix satisfy \(|\lambda_1|\leqslant\cdots \leqslant|\lambda_r|\) and \(|\lambda_s| <|\lambda_{s+1}| (s\leqslant r-1)\), then associated with any eigenvalue \(\lambda_i(i\leqslant s)\), the errors of the eigenvalue and eigenvector derivatives obtained by the \(q\)th-order approximate method are proportional to \(|\lambda_i/\lambda_{s+1}|^{q+1}\), where the approximate method only uses the eigenpairs corresponding to \(\lambda_1\), \(\lambda_2,\dots,\lambda_s\). A numerical example shows the validity of the approximate method. The numerical example also shows that in order to get the approximate solutions with the same order accuracy, a higher order method should be used for higher order eigenvalue and eigenvector derivatives.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
70J10 Modal analysis in linear vibration theory
Full Text: DOI

References:

[1] Zhao, Y. Q., Liu, Z. S., Chen, S. H., and Zhang, G. Y. An accurate modal truncation method for eigenvector derivatives. Computers & Structures, 73(6), 609-614 (1999) · Zbl 0955.74516 · doi:10.1016/S0045-7949(98)00227-2
[2] Nelson, R. B. Simplified calculation of eigenvector derivatives. AIAA Journal, 14(9), 1201-1205 (1976) · Zbl 0342.65021 · doi:10.2514/3.7211
[3] Ojalvo, I. U. Efficient computation of modal sensitivities for systems with repeated frequencies. AIAA Journal, 26(3), 361-366 (1988) · Zbl 0682.73043 · doi:10.2514/3.9897
[4] Mills-Curran, W. C. Calculation of eigenvector derivatives for structures with repeated eigenvalues. AIAA Journal, 26(7), 867-871 (1988) · Zbl 0665.73069 · doi:10.2514/3.9980
[5] Dailey, R. L. Eigenvector derivatives with repeated eigenvalues. AIAA Journal, 27(4), 486-491 (1989) · doi:10.2514/3.10137
[6] Friswell, M. I. Calculation of 2nd-order and higher-order eigenvector derivatives. Journal of Guidance, Control and Dynamics, 18(4), 919-921 (1995) · Zbl 0847.73029 · doi:10.2514/3.21481
[7] Friswell, M. I. The derivatives of repeated eigenvalues and their associated eigenvectors. Journal of Vibration and Acoustics-Transactions of the ASME, 118(3), 390-397 (1996) · doi:10.1115/1.2888195
[8] Lee, I. W., Jung, G. H., and Lee, J. W. Numerical method for sensitivity analysis of eigensystems with non-repeated and repeated eigenvalues. Journal of Sound and Vibration, 195(1), 17-32 (1996) · Zbl 1235.74363 · doi:10.1006/jsvi.1996.9989
[9] Lee, I. W. and Jung, G. H. An efficient algebraic method for the computation of natural frequency and mode shape sensitivities, 1: distinct natural frequencies. Computers & Structures, 62(3), 429-435 (1997) · Zbl 0912.73080 · doi:10.1016/S0045-7949(96)00206-4
[10] Lee, I. W. and Jung, G. H. An efficient algebraic method for the computation of natural frequency and mode shape sensitivities, 2: multiple natural frequencies. Computers & Structures, 62(3), 437-443 (1997) · Zbl 0912.73080 · doi:10.1016/S0045-7949(96)00207-6
[11] Wei, F. S. and Zhang, D. W. Eigenvector derivatives with repeated eigenvalues using generalized inverse technique. AIAA Journal, 34(10), 2206-2209 (1996) · Zbl 0900.70251 · doi:10.2514/3.13379
[12] Lee, I. W., Kim, D. O., and Jung, G. H. Natural frequency and mode shape sensitivities of damped systems: part I, distinct natural frequencies. Journal of Sound and Vibration, 223(3), 399-412 (1999) · doi:10.1006/jsvi.1998.2129
[13] Lee, I. W., Kim, D. O., and Jung, G. H. Natural frequency and mode shape sensitivities of damped systems: part II, multiple natural frequencies. Journal of Sound and Vibration, 223(3), 413-424 (1999) · doi:10.1006/jsvi.1998.2130
[14] Choi, K. M., Jo, H. K., Kim, W. H., and Lee, I. W. Sensitivity analysis of non-conservative eigensystems. Journal of Sound and Vibration, 274(3-5), 997-1011 (2004) · doi:10.1016/S0022-460X(03)00660-6
[15] Choi, K. M., Cho, S. W., Ko, M. G., and Lee, I. W. Higher order eigensensitivity analysis of damped systems with repeated eigenvalues. Computers & Structures, 82(1), 63-69 (2004) · doi:10.1016/j.compstruc.2003.08.001
[16] Liu, J. K. Universal perturbation technique for reanalysis of non-self-adjoint systems. AIAA Journal, 38(6), 1035-1039 (2000) · doi:10.2514/2.1064
[17] Adhikari, S. and Friswell, M. I. Calculation of eigensolution derivatives for nonviscously damped systems using Nelson’s method. AIAA Journal, 44(8), 1799-1806 (2006) · doi:10.2514/1.20049
[18] Najeh, G., Hichem, S., and Mnaouar, C. A direct algebraic method for eigensolution sensitivity computation of damped asymmetric systems. International Journal for Numerical Methods in Engineering, 68(6), 674-689 (2006) · Zbl 1128.74015 · doi:10.1002/nme.1732
[19] Najeh, G., Mnaouar, C., and Hichem, S. Second-order eigensensitivity analysis of asymmetric damped systems using Nelson’s method. Journal of Sound and Vibration, 300(3-5), 974-992 (2007)
[20] Xu, Z. H., Zhong, H. X., Zhu, X. W., and Wu, B. S. An efficient algebraic method for computing eigensolution sensitivity of asymmetric damped systems. Journal of Sound and Vibration, 327(3-5), 584-592 (2009) · doi:10.1016/j.jsv.2009.07.013
[21] Luongo, A. Eigensolutions sensitivity for nonsymmetric matrices with repeated eigenvalues. AIAA Journal, 31(7), 1321-1328 (1993) · Zbl 0783.65035 · doi:10.2514/3.11770
[22] Zhang, Z. Y. and Zhang, H. S. Eigensensitivity analysis of a defective matrix. AIAA Journal, 39(3), 473-479 (2001) · doi:10.2514/2.1329
[23] Zhang, Z. Y. and Zhang, H. S. Higher-order eigensensitivity analysis of a defective matrix. AIAA Journal, 40(4), 751-757 (2002) · doi:10.2514/2.1708
[24] Zhang, Z. Y. and Zhang, H. S. Eigensensitivity analysis of defective matrix with zero first-order eigenvalue derivatives. AIAA Journal, 42(1), 114-123 (2004) · doi:10.2514/1.1915
[25] Fox, R. L. and Kapoor, M. P. Rates of change eigenvalues and eigenvectors. AIAA Journal, 6(12), 2426-2429 (1968) · Zbl 0181.53003 · doi:10.2514/3.5008
[26] Murthy, D. V. and Haftka, R. T. Derivatives of eigenvalues and eigenvectors of a general complex matrix. International Journal for Numerical Methods in Engineering, 26(2), 293-311 (1998) · Zbl 0637.65030 · doi:10.1002/nme.1620260202
[27] Juang, J. N., Ghaemmaghami, P., and Lim, K. B. Eigenvalue and eigenvector derivatives of a nondefective matrix. Journal of Guidance, Control and Dynamics, 12(4), 480-486 (1989) · Zbl 0709.65029 · doi:10.2514/3.20435
[28] Bernard, M. L. and Bronowicki, A. J. Modal expansion method for eigensensitivity with repeated roots. AIAA Journal, 32(7), 1500-1506 (1994) · Zbl 0810.73039 · doi:10.2514/3.12221
[29] Zhang, D. W. and Wei, F. S. Computation of eigenvector derivatives with repeated eigenvalues using a complete modal space. AIAA Journal, 33(9), 1749-1753 (1995) · Zbl 0868.73046 · doi:10.2514/3.12723
[30] Adhikari, S. and Friswell, M. I. Eigenderivative analysis of asymmetric non-conservative systems. International Journal for Numerical Methods in Engineering, 51(6), 709-733 (2001) · Zbl 0992.70016 · doi:10.1002/nme.186.abs
[31] Adhikari, S. Derivative of eigensolutions of nonviscously damped linear systems. AIAA Journal, 30(10), 2061-2069 (2002) · doi:10.2514/2.1539
[32] Zhang, Z. Y. and Zhang, H. S. Calculation of eigenvalue and eigenvector derivatives of a defective matrix. Applied Mathematics and Computation, 176(1), 7-26 (2006) · Zbl 1093.65039 · doi:10.1016/j.amc.2005.09.061
[33] Zhang, Z. Y. A development of modal expansion method for eigensensitivity analysis of a defective matrix. Applied Mathematics and Computation, 188(2), 1995-2019 (2007) · Zbl 1121.65040 · doi:10.1016/j.amc.2006.11.072
[34] Wang, B. P. Improved approximate methods for computing eigenvector derivatives in structural dynamics. AIAA Journal, 29(6), 1018-1020 (1991) · doi:10.2514/3.59945
[35] Zeng, Q. H. Highly accurate modal method for calculating eigenvector derivatives in viscous damping systems. AIAA Journal, 33(4), 746-751 (1995) · Zbl 0826.73037 · doi:10.2514/3.12453
[36] Kim, Y., Lee, S., and Junkins, J. L. Eigenvector derivatives for mechanical 2nd-order systems. Journal of Guidance, Control and Dynamics, 18(4), 899-906 (1995) · Zbl 0833.73075 · doi:10.2514/3.21475
[37] Moon, Y. J., Kim, B. W., Ko, M. G., and Lee, I. W. Modified modal methods for calculating eigenpair sensitivity of asymmetric damped system. International Journal for Numerical Methods in Engineering, 66(11), 1847-1860 (2004) · Zbl 1060.70511 · doi:10.1002/nme.1025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.