×

The energy criterion for deformation banding in ductile single crystals. (English) Zbl 1294.74023

Summary: The phenomenon of spontaneous formation of deformation bands in metal single crystals deformed plastically by crystallographic multislip is investigated theoretically by using the energy criterion of instability of a uniform deformation path. The second-order energy criterion for incipient deformation banding is derived in a time-continuous setting for a rate-independent elastic-plastic crystal. The need for selective symmetrization of the local interaction matrix for active slip-systems is demonstrated. A computational approach to deformation banding is developed by using non-convex constrained minimization of the incremental work with respect to increments in crystallographic shears and kinematical degrees of freedom. Calculated examples of deformation banding patterns in fcc single crystals are compared with experimental observations.

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
74N05 Crystals in solids
Full Text: DOI

References:

[1] Anand, L.; Kothari, M., A computational procedure for rate-independent crystal plasticity, J. Mech. Phys. Solids, 44, 4, 525-558 (1996) · Zbl 1054.74549
[2] Asaro, R. J., Micromechanics of crystals and polycrystals, Adv. Appl. Mech., 23, 1-115 (1983)
[3] Asaro, R. J.; Rice, J. R., Strain localization in ductile single crystals, J. Mech. Phys. Solids, 25, 5, 309-338 (1977) · Zbl 0375.73097
[4] Aubry, S.; Ortiz, M., The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains, Proc. R. Soc. London A, 459, 3131-3158 (2003) · Zbl 1041.74506
[5] Ball, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63, 4, 337-403 (1977) · Zbl 0368.73040
[6] Barrett, C. S.; Levenson, L. H., Structure of iron after drawing, swaging and elongation in tension, Trans. AIME, 135, 327-352 (1939)
[7] Bassani, J. L., Plastic flow of crystals, Adv. Appl. Mech., 30, 191-258 (1994) · Zbl 0803.73009
[8] Basson, F.; Driver, J. H., Deformation banding mechanisms during plane strain compression of cube-oriented f.c.c. crystals, Acta Mater., 48, 2101-2115 (2000)
[9] Bay, B.; Hansen, N.; Hughes, D. A.; Kuhlmann-Wilsdorf, D., Evolution of f.c.c, deformation structures in polyslip, Acta Metall. Mater., 40, 2, 205-219 (1992)
[10] Bay, B.; Hansen, N.; Kuhlmann-Wilsdorf, D., Deformation structures in lightly rolled pure aluminium, Mater. Sci. Eng. A, 113, 385-397 (1989)
[11] Bertsekas, D. P., Constrained Optimization and Lagrange Multiplier Methods (1996), Athena Scientific: Athena Scientific Belmont, MA
[12] Bishop, J. F.W.; Hill, R., A theory of plastic distortion of a polycrystalline aggregate under combined stresses, Philos. Mag., 42, 327, 414-427 (1951) · Zbl 0042.22705
[13] Bleier, N.; Mosler, J., Efficient variational constitutive updates by means of a novel parameterization of the flow rule, Int. J. Numer. Methods Eng., 89, 9, 1120-1143 (2012) · Zbl 1242.74202
[14] Butler, G. C.; Stock, S. R.; McGinty, R. D.; McDowell, D. L., X-ray microbeam Laue pattern studies of the spreading of orientation in OFHC copper at large strains, J. Eng. Mater. Technol., 124, 1, 48-54 (2002)
[15] Carstensen, C.; Conti, S.; Orlando, A., Mixed analytical-numerical relaxation in finite single-slip crystal plasticity, Continuum Mech. Thermodyn., 20, 5, 275-301 (2008) · Zbl 1160.74326
[16] Carstensen, C.; Hackl, K.; Mielke, A., Non-convex potentials and microstructures in finite-strain plasticity, Proc. R. Soc. London A, 458, 299-317 (2002) · Zbl 1008.74016
[17] Chin, G. Y.; Wonsiewicz, B. C., Deformation banding and stability of (100)-(111) fiber textures of fcc metals, Trans. AIME, 245, 4, 871 (1969)
[18] Chipot, M.; Kinderlehrer, D., Equilibrium configurations of crystals, Arch. Ration. Mech. Anal., 103, 3, 237-277 (1988) · Zbl 0673.73012
[19] Conti, S.; Theil, F., Single-slip elastoplastic microstructures, Arch. Ration. Mech. Anal., 178, 1, 125-148 (2005) · Zbl 1076.74017
[20] Dmitrieva, O.; Dondl, P. W.; Müller, S.; Raabe, D., Lamination microstructure in shear deformed copper single crystals, Acta Mater., 57, 3439-3449 (2009)
[21] Embury, J. D.; Korbel, A.; Raghunathan, V. S.; Rys, J., Shear band formation in cold rolled Cu-6
[22] Fedelich, B.; Ehrlaher, A., An analysis of stability of equilibrium and of quasi-static transformations on the basis of the dissipation function, Eur. J. Mech. A. Solids, 16, 833-855 (1997) · Zbl 0885.73020
[23] Franciosi, P.; Zaoui, A., Multislip in f.c.c. crystals a theoretical approach compared with experimental data, Acta Metall., 30, 9, 1627-1637 (1982)
[24] Franciosi, P.; Zaoui, A., Crystal hardening and the issue of uniqueness, Int. J. Plasticity, 7, 295-311 (1991) · Zbl 0761.73034
[25] Graves, L. M., The Weierstrass condition for multiple integral variation problem, Duke Math. J., 5, 3, 656-660 (1939) · JFM 65.0453.03
[26] Halphen, B.; Nguyen, Q. S., Sur les matériaux standards généralisés, J. Méc, 14, 1, 39-63 (1975) · Zbl 0308.73017
[27] Hansen, B. L.; Bronkhorst, C. A.; Ortiz, M., Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals, Modelling Simul. Mater. Sci. Eng., 18, 055001 (2010)
[28] Hansen, N.; Huang, X.; Winther, G., Effect of grain boundaries and grain orientation on structure and properties, Metall. Mater. Trans. A, 42, 613-625 (2011)
[29] Hansen, N.; Juul Jensen, D., Deformed metals—structure, recrystallisation and strength, Mater. Sci. Technol., 27, 8, 1229-1240 (2011)
[30] Harren, S. V.; Dève, H. E.; Asaro, R. J., Shear band formation in plane strain compression, Acta Metall., 36, 9, 2435-2480 (1988)
[31] Havner, K. S., Finite Plastic Deformation of Crystalline Solids (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0774.73001
[32] Havner, K. S.; Shalaby, A. H., A simple mathematical theory of finite distortional latent hardening in single crystals, Proc. R. Soc. London A, 358, 47-70 (1977) · Zbl 0366.73042
[33] Havner, K. S.; Yu, P., Kinematic, stress, and hardening analysis in finite double slip, Int. J. Plasticity, 21, 83-99 (2005) · Zbl 1112.74338
[34] Hill, R., Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Solids, 7, 209-225 (1959) · Zbl 0086.17301
[35] Hill, R., Generalized constitutive relations for incremental deformation of metal crystals by multislip, J. Mech. Phys. Solids, 14, 2, 95-102 (1966)
[36] Hill, R., Aspects of invariance in solids mechanics, Adv. Appl. Mech., 18, 1-75 (1978) · Zbl 0475.73026
[37] Hill, R.; Rice, J. R., Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solids, 20, 401-413 (1972) · Zbl 0254.73031
[38] Honeycombe, R. W.K., Inhomogeneities in the plastic deformation of metal crystals. 2. X-ray and optical micrography of aluminium, J. Inst. Metals, 80, 49-56 (1951)
[39] Huang, X., Grain orientation effect on microstructure in tensile strained copper, Scr. Mater., 38, 11, 1697-1703 (1998)
[40] Huang, X.; Hansen, N., Grain orientation dependence of microstructure in aluminium deformed in tension, Scr. Mater., 37, 1, 1-7 (1997)
[41] Huang, X.; Winther, G., Dislocation structures. Part I. Grain orientation dependence, Philos. Mag., 87, 33, 5189-5214 (2007)
[42] Hughes, D. A.; Liu, Q.; Chrzan, D. C.; Hansen, N., Scaling of microstructural parametersmisorientations of deformation induced boundaries, Acta Mater., 45, 1, 105-112 (1997)
[43] Kochmann, D. M.; Hackl, K., The evolution of laminates in finite crystal plasticitya variational approach, Continuum Mech. Thermodyn., 23, 63-85 (2011) · Zbl 1272.74081
[44] Kohn, R. V., The relaxation of a double-well energy, Continuum Mech. Thermodyn., 3, 3, 193-236 (1991) · Zbl 0825.73029
[45] Kratochvíl, J., Instability origin of dislocation cell misorientation, Scr. Metall. Mater., 24, 1225-1228 (1990)
[46] Kratochvíl, J.; Kružík, M.; Sedláček, R., Statistically based continuum model of misoriented dislocation cell structure formation, Phys. Rev. B, 75, 6, 064104 (2007)
[47] Kratochvíl, J.; Kružík, M.; Sedláček, R., Instability origin of subgrain formation in plastically deformed materials, Int. J. Eng. Sci., 48, 1401-1412 (2010) · Zbl 1231.74058
[48] Kuhlmann-Wilsdorf, D., Theory of plastic deformationproperties of low energy dislocation structures, Mater. Sci. Eng. A, 113, 1-41 (1989)
[49] Kuhlmann-Wilsdorf, D., “Regular” deformation bands (DBs) and the LEDS hypothesis, Acta Mater., 47, 6, 1697-1712 (1999)
[50] Kuhlmann-Wilsdorf, D.; Kulkarni, S. S.; Moore, J. T.; Starke, E. A., Deformation bands, the LEDS theory, and their importance in texture developmentPart I. Previous evidence and new observations, Metall. Mater. Trans. A, 30, 2491-2501 (1999)
[51] Kuhlmann-Wilsdorf, D.; Wilsdorf, H., The surface structures of deformed aluminium, copper, silver and alpha-brass and their theoretical interpretation, Acta Metall., 1, 4, 394-399 (1953), 401-413
[52] Lee, C. S.; Duggan, B. J., Deformation banding and copper-type rolling textures, Acta Metall. Mater., 41, 2691-2699 (1993)
[53] Lee, C. S.; Duggan, B. J.; Smallman, R. E., A theory of deformation banding in cold rolling, Acta Metall. Mater., 41, 8, 2265-2270 (1993)
[54] Mahesh, S.; Tomé, C. N., Deformation banding under arbitrary monotonic loading in cubic metals, Philos. Mag., 84, 33, 3517-3546 (2004)
[55] Mandel, J., Plasticité classique et viscoplasticité. CISM Courses and Lectures, vol. 97 (1971), Springer-Verlag: Springer-Verlag Wien, New York · Zbl 0285.73018
[56] McDowell, D. L., A perspective on trends in multiscale plasticity, Int. J. Plasticity, 26, 9, 1280-1309 (2010) · Zbl 1402.74022
[57] Miehe, C.; Lambrecht, M.; Gürses, E., Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methodsevolving deformation microstructures in finite plasticity, J. Mech. Phys. Solids, 52, 2725-2769 (2004) · Zbl 1115.74323
[58] Morrey, C. B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math., 2, 1, 25-53 (1952) · Zbl 0046.10803
[59] Mosler, J., Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening, Comput. Methods Appl. Mech. Eng., 199, 45-48, 2753-2764 (2010) · Zbl 1231.74059
[60] Nocedal, J.; Wright, S. J., Numerical Optimization (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0930.65067
[61] Ortiz, M.; Repetto, E. A., Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47, 286-351 (1999) · Zbl 0964.74012
[62] Ortiz, M.; Repetto, E. A.; Stainier, L., A theory of subgrain dislocation structures, J. Mech. Phys. Solids, 48, 2077-2114 (2000) · Zbl 1001.74007
[63] Peirce, D.; Asaro, R. J.; Needleman, A., An analysis of nonuniform and localized deformation in ductile single crystals, Acta Metall., 30, 6, 1087-1119 (1982)
[65] Petryk, H., The energy criteria of instability in time-independent inelastic solids, Arch. Mech., 43, 4, 519-545 (1991) · Zbl 0757.73029
[66] Petryk, H., Material instability and strain-rate discontinuities in incrementally nonlinear continua, J. Mech. Phys. Solids, 40, 6, 1227-1250 (1992) · Zbl 0763.73028
[67] Petryk, H., Stability and constitutive inequalities in plasticity, (Muschik, W., Non-equilibrium Thermodynamics with Application to Solids. CISM Courses and Lectures, vol. 336. (1993), Springer: Springer Wien, New York), 259-329 · Zbl 0808.35160
[68] Petryk, H., Instability of plastic deformation processes, (Tatsumi, T.; Watanabe, E.; Kambe, T., Proceedings of the XIXth IUTAM Congress, Kyoto, 1996. Theoretical and Applied Mechanics (1997), Elsevier: Elsevier Amsterdam), 497-516
[69] Petryk, H., General conditions for uniqueness in materials with multiple mechanisms of inelastic deformation, J. Mech. Phys. Solids, 48, 367-396 (2000) · Zbl 0996.74019
[70] Petryk, H., Incremental energy minimization in dissipative solids, C. R. Méc., 331, 469-474 (2003) · Zbl 1177.74171
[71] Petryk, H., Thermodynamic conditions for stability in materials with rate-independent dissipation, Philos. Trans. R. Soc. A, 363, 2479-2515 (2005) · Zbl 1152.74310
[72] Petryk, H.; Kursa, M., Selective symmetrization of the slip-system interaction matrix in crystal plasticity, Arch. Mech., 63, 3, 287-310 (2011) · Zbl 1269.74047
[73] Petryk, H.; Stupkiewicz, S., Interfacial energy and dissipation in martensitic phase transformations. Part Itheory, J. Mech. Phys. Solids, 58, 390-408 (2010) · Zbl 1193.74046
[74] Petryk, H.; Thermann, K., Post-critical deformation pattern in plane strain plastic flow with yield-surface vertex effect, Int. J. Mech. Sci., 42, 2133-2146 (2000) · Zbl 1112.74327
[75] Petryk, H.; Thermann, K., Post-critical plastic deformation in incrementally nonlinear materials, J. Mech. Phys. Solids, 50, 925-954 (2002) · Zbl 1072.74511
[76] Rice, J. R., Inelastic constitutive relations for solidsan internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 433-455 (1971) · Zbl 0235.73002
[77] Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D. D.; Bieler, T. R.; Raabe, D., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modelingtheory, experiments, applications, Acta Mater., 58, 1152-1211 (2010)
[78] Schurig, M.; Bertram, A., Relaxation in multi-mode plasticity with a rate-potential, Comput. Mater. Sci., 32, 3-4, 524-531 (2005)
[79] Svendsen, B.; Bargmann, S., On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation, J. Mech. Phys. Solids, 58, 9, 1253-1271 (2010) · Zbl 1431.74028
[80] Wert, J. A.; Huang, X.; Inoko, F., Deformation bands in a [110] aluminium single crystal strained in tension, Proc. R. Soc. London A, 459, 85-108 (2003)
[81] Winther, G.; Huang, X., Dislocation structures. Part II. Slip system dependence, Philos. Mag., 87, 33, 5215-5235 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.