×

Classifying \(C^\ast\)-algebras with both finite and infinite subquotients. (English) Zbl 1294.46052

J. Funct. Anal. 265, No. 3, 449-468 (2013); corrigendum ibid. 270, No. 2, 854-859 (2016).
This paper is concerned with the classification of \(C^*\)-algebras \({\mathfrak E}\) over finite \(T_0\) topological spaces, assuming that the simple sub-quotients of \({\mathfrak E}\) are classifiable by \(K\)-theoretical invariants. An important step exhibits classes of extensions \(0\rightarrow {\mathfrak B} \rightarrow {\mathfrak E} \rightarrow {\mathfrak A} \rightarrow 0\) of \(C^*\)-algebras such that, if both \({\mathfrak A}\) and \({\mathfrak B}\) are classifiable by \(K\)-theoretical invariants, then the same holds for \({\mathfrak E}\). The main technical result, Theorem 4.6, considers the situation where \({\mathfrak E}\) is a \(C^*\)-algebra over a finite \(T_0\) topological space \(X\) with a non-trivial open subset \(U\) such that \({\mathfrak B}\) is a \(C^*\)-algebra over \(U\) and \({\mathfrak A}\) a \(C^*\)-algebra over \(Y=X\setminus U\). Assuming certain technical conditions on two full extensions \(0\rightarrow {\mathfrak B}_i \rightarrow {\mathfrak E}_i \rightarrow {\mathfrak A}_i \rightarrow 0\), \(i=1,2\), as above, it is proved that, if there exists an isomorphism \(\alpha:\text{FK}_X ({\mathfrak E}_1)\rightarrow \text{FK}_X ({\mathfrak E}_2)\) at the level of filtered \(K\)-theory which lifts to an invertible element in \(KK(X;{\mathfrak E}_1,{\mathfrak E}_2)\) and induces isomorphisms \(\alpha_U :\text{FK}_U^+ ({\mathfrak B}_1) \rightarrow \text{FK}_U^+ ({\mathfrak B}_2)\) and, respectively, \(\alpha_Y :\text{FK}_Y^+ ({\mathfrak A}_1) \rightarrow \text{FK}_Y^+ ({\mathfrak A}_2)\) at the level of filtered ordered \(K\)-theory, then the \(C^*\)-algebras \({\mathfrak E}_1\) and \({\mathfrak E}_2\) are isomorphic. The possibility of removing some of these technical assumptions is analysed. This extends an earlier work of the authors [Adv. Math. 222, No. 6, 2153–2172 (2009; Zbl 1207.46055)].
These results are then applied to show that a large class of graph \(C^*\)-algebras, associated to finite linear lattices with no more than one transition from finite to infinite sub-quotients, are classified up to stable isomorphisms by their filtered ordered \(K\)-theory.

MSC:

46L35 Classifications of \(C^*\)-algebras
19K14 \(K_0\) as an ordered group, traces
19K35 Kasparov theory (\(KK\)-theory)
46L80 \(K\)-theory and operator algebras (including cyclic theory)
46M18 Homological methods in functional analysis (exact sequences, right inverses, lifting, etc.)

Citations:

Zbl 1207.46055

References:

[1] Arklint, S., Classification of non-simple \(C^\ast \)-algebras of real rank zero (2012), University of Copenhagen, PhD Thesis
[2] Arklint, S.; Bentmann, R.; Katsura, T., Reduction of filtered \(K\)-theory and a characterization of Cuntz-Krieger algebras (2013)
[3] Arklint, S.; Restorff, G.; Ruiz, E., Filtrated \(K\)-theory for real rank zero \(C^\ast \)-algebras, Internat. J. Math., 23, 8, 1250078 (2012), 19 pp · Zbl 1257.46028
[4] Bates, T.; Hong, J. H.; Raeburn, I.; Szymański, W., The ideal structure of the \(C^\ast \)-algebras of infinite graphs, Illinois J. Math., 46, 1159-1176 (2002) · Zbl 1036.46038
[5] Bentmann, R.; Köhler, M., Universal coefficient theorems for \(C^\ast \)-algebras over finite topological spaces (2011)
[6] Blackadar, B., \(K\)-theory for Operator Algebras, Math. Sci. Res. Inst. Publ., vol. 5 (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0913.46054
[7] Brown, L. G., Stable isomorphism of hereditary subalgebras of \(C^\ast \)-algebras, Pacific J. Math., 71, 335-348 (1977) · Zbl 0362.46042
[8] Brown, L. G.; Pedersen, G. K., \(C^\ast \)-algebras of real rank zero, J. Funct. Anal., 99, 1, 131-149 (1991) · Zbl 0776.46026
[9] Cuntz, J., \(K\)-theory for certain \(C^\ast \)-algebras, Ann. of Math. (2), 113, 181-197 (1981) · Zbl 0437.46060
[10] Cuntz, J.; Skandalis, G., Mapping cones and exact sequences in KK-theory, J. Operator Theory, 15, 163-180 (1986) · Zbl 0603.46063
[11] Drinen, D.; Tomforde, M., The \(C^\ast \)-algebras of arbitrary graphs, Rocky Mountain J. Math., 35, 105-135 (2005) · Zbl 1090.46050
[12] Eilers, S.; Loring, T. A.; Pedersen, G. K., Morphisms of extensions of \(C^\ast \)-algebras: pushing forward the Busby invariant, Adv. Math., 147, 74-109 (1999) · Zbl 1014.46030
[13] Eilers, S.; Restorff, G.; Ruiz, E., Classification of extensions of classifiable \(C^\ast \)-algebras, Adv. Math., 222, 2153-2172 (2009) · Zbl 1207.46055
[15] Eilers, S.; Restorff, G.; Ruiz, E., On graph \(C^\ast \)-algebras with a linear ideal lattice, Bull. Malays. Math. Sci. Soc. (2), 33, 233-241 (2010) · Zbl 1206.46051
[16] Eilers, S.; Tomforde, M., On the classification of nonsimple graph \(C^\ast \)-algebras, Math. Ann., 346, 393-418 (2010) · Zbl 1209.46035
[17] Elliott, G. A., On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra, 38, 29-44 (1976) · Zbl 0323.46063
[18] Kirchberg, E., Das nicht-kommutative Michael-Auswahlprinzip und die Klassifikation nicht-einfacher Algebren, \((C^\ast \)-algebras. \(C^\ast \)-algebras, Münster, 1999 (2000), Springer: Springer Berlin), 92-141 · Zbl 0976.46051
[19] Kucerovsky, D.; Ng, P. W., The corona factorization property and approximate unitary equivalence, Houston J. Math., 32, 531-550 (2006) · Zbl 1111.46050
[20] Kucerovsky, D.; Ng, P. W., \(S\)-regularity and the corona factorization property, Math. Scand., 99, 204-216 (2006) · Zbl 1139.46037
[21] Kucerovsky, D.; Ng, P. W., Full extensions and approximate unitary equivalence, Pacific J. Math., 229, 389-428 (2007) · Zbl 1152.46049
[22] Meyer, R.; Nest, R., \(C^\ast \)-algebras over topological spaces: the bootstrap class, Münster J. Math., 2, 215-252 (2009) · Zbl 1191.46058
[23] Meyer, R.; Nest, R., \(C^\ast \)-algebras over topological spaces: Filtrated K-theory, Canad. J. Math., 64, 2, 368-408 (2012) · Zbl 1251.19004
[24] Ng, P. W., The corona factorization property, (Operator Theory, Operator Algebras, and Applications. Operator Theory, Operator Algebras, and Applications, Contemp. Math., vol. 414 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 97-110 · Zbl 1110.46039
[25] Ortega, E.; Perera, F.; Rørdam, M., The corona factorization property and refinement monoids, Trans. Amer. Math. Soc., 363, 9, 4505-4525 (2011) · Zbl 1235.46057
[26] Restorff, G., Classification of Cuntz-Krieger algebras up to stable isomorphism, J. Reine Angew. Math., 598, 185-210 (2006) · Zbl 1111.46034
[27] Rørdam, M., Ideals in the multiplier algebra of a stable \(C^\ast \)-algebra, J. Operator Theory, 25, 283-298 (1991) · Zbl 0785.46049
[28] Rørdam, M., Classification of extensions of certain \(C^\ast \)-algebras by their six term exact sequences in \(K\)-theory, Math. Ann., 308, 93-117 (1997) · Zbl 0874.46039
[29] Rosenberg, J.; Schochet, C., The Künneth theorem and the universal coefficient theorem for Kasparovʼs generalized \(K\)-functor, Duke Math. J., 55, 2, 431-474 (1987) · Zbl 0644.46051
[30] Toms, A.; Winter, W., Strongly self-absorbing \(C^\ast \)-algebras, Trans. Amer. Math. Soc., 359, 3999-4029 (2007), (electronic) · Zbl 1120.46046
[31] Zhang, S., A Riesz decomposition property and ideal structure of multiplier algebras, J. Operator Theory, 24, 209-225 (1990) · Zbl 0747.46043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.