×

A Wakimoto type realization of toroidal \(\mathfrak{sl}_{n+1}\). (English) Zbl 1294.17019

Summary: The authors construct a Wakimoto type realization of toroidal \(\mathfrak{sl}_{n+1}\). The representation constructed in this paper utilizes non-commuting differential operators acting on the tensor product of two polynomial rings in infinitely many commuting variables.

MSC:

17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
17B69 Vertex operators; vertex operator algebras and related structures
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] G. Benkart and E. Zelmanov, Invent. Math. 126(1), 1 (1996), DOI: 10.1007/s002220050087.
[2] S. Berman, Y. Billig and J. Szmigielski, Recent Developments in Infinite-dimensional Lie Algebras and Conformal Field Theory, Contemp. Math 297 (Amer. Math. Soc, Providence, RI, 2002) pp. 1-26. · Zbl 1018.17017
[3] S. Berman and R. V. Moody, Invent. Math. 108(2), 323 (1992), DOI: 10.1007/BF02100608.
[4] D. Bernard and G. Felder, Comm. Math. Phys. 127(1), 145 (1990), DOI: 10.1007/BF02096498.
[5] Y. Billig, J. Algebra 217(1), 40 (1999), DOI: 10.1006/jabr.1998.7788.
[6] Y. Billig, J. Math. Phys. 46(4), 043101 (2005), DOI: 10.1063/1.1857065.
[7] Y. Billig, J. Algebra 308(1), 252 (2007), DOI: 10.1016/j.jalgebra.2006.09.010.
[8] S. Buelk, B.L. Cox, E.G. Jurisich, A Wakimoto type realization of toroidal 𝔰𝔩n+1 (long version) (manuscript [math.RT], 2010) , arXiv:1007.1165v1 [ arXiv ] .
[9] B. L. Cox, Recent Developments in Infinite-dimensional Lie Algebras and Conformal Field Theory, Contemp. Math 297 (Amer. Math. Soc, Providence, RI, 2002) pp. 47-68.
[10] B. L. Cox, Algebr. Represent. Theory 8(2), 173 (2005).
[11] B. L. Cox and V. Futorny, J. Algebra 306(2), 682 (2006), DOI: 10.1016/j.jalgebra.2006.08.019.
[12] P. I.   Etingof , I. B.   Frenkel and A. A. Kirillov Jr. , Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations , Mathematical Surveys and Monographs   58 ( American Mathematical Society , Providence, RI , 1998 ) . · Zbl 0903.17006
[13] B. L. Feĭgin and E. V. Frenkel, Comm. Math. Phys. 128(1), 161 (1990).
[14] B. L. Feigin and E. V. Frenkel, Physics and Mathematics of Strings (World Sci. Publishing, Teaneck, NJ, 1990) pp. 271-316.
[15] B. L. Feigin and E. V. Frenkel, Lett. Math. Phys. 19(4), 307 (1990), DOI: 10.1007/BF00429950.
[16] V. Ginzburg, M. Kapranov and É. Vasserot, Math. Res. Lett. 2(2), 147 (1995).
[17] K. Iohara, Y. Saito and M. Wakimoto, Phys. Lett. A 254(2), 37 (1999), DOI: 10.1016/S0375-9601(99)00093-6.
[18] N. H. Jing, K. C. Misra and C. B. Xu, Proc. Amer. Math. Soc. 137(11), 3609 (2009), DOI: 10.1090/S0002-9939-09-09942-0.
[19] V.   Kac , Vertex Algebras for Beginners , 2nd edn. , University Lecture Series   10 ( American Mathematical Society , Providence, RI , 1998 ) . · Zbl 0924.17023
[20] S. Kakei, T. Ikeda and K. Takasaki, Ann. Henri Poincaré 3(5), 817 (2002), DOI: 10.1007/s00023-002-8638-1.
[21] G. Kuroki, Comm. Math. Phys. 142(3), 511 (1991), DOI: 10.1007/BF02099099.
[22] J.   Lepowsky and H. S.   Li , Introduction to Vertex Operator Algebras and Their Representations , Progress in Mathematics   227 ( Birkhäuser , Boston, MA , 2004 ) . · Zbl 1055.17001
[23] H. S. Li and G. Yamskulna, J. Algebra 283(1), 367 (2005), DOI: 10.1016/j.jalgebra.2004.07.030.
[24] R. V. Moody, S. Eswara Rao and T. Yokonuma, Geom. Dedicata 35(3), 283 (1990), DOI: 10.1007/BF00147350.
[25] V. V. Schechtman and A. N. Varchenko, Lett. Math. Phys. 20(4), 279 (1990), DOI: 10.1007/BF00626523.
[26] V. V. Schechtman and A. N. Varchenko, Invent. Math. 106(1), 139 (1991), DOI: 10.1007/BF01243909.
[27] P. Slodowy, Lie Algebras and Related Topics, CMS Conf. Proc 5 (Amer. Math. Soc, Providence, RI, 1986) pp. 361-371.
[28] M. Wakimoto, Comm. Math. Phys. 104(4), 605 (1986), DOI: 10.1007/BF01211068.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.