×

Automorphic period and the central value of Rankin-Selberg \(L\)-function. (English) Zbl 1294.11069

The present paper studies the relations between period integrals related to automorphic forms and certain \(L\)-values. Subject to some local conditions, it establishes a refinement of the global Gan-Gross-Prasad conjecture for unitary groups.
In the 1980’s, J. L. Waldspurger [Compos. Math. 54, 173–242 (1985; Zbl 0567.10021)] proved his celebrated formula that relates certain toric periods to the central values of \(L\)-functions on \(\mathrm{GL}_2\). Later, B. H. Gross and D. Prasad [Can. J. Math. 44, No. 5, 974–1002 (1992; Zbl 0787.22018)] generalized Waldspurger’s formula to higher rank orthogonal groups, and conjectured that periods on \(\mathrm{SO}_n\times \mathrm{SO}_{n-1}\) restricted to the diagonal \(\mathrm{SO}_{n-1}\) are nonzero exactly when certain automorphic \(L\)-functions at the central critical point are non-vanishing. W. T. Gan et al. in [Astérisque 346, 1–109 (2012; Zbl 1280.22019)] further generalized this conjecture to classical groups, including unitary groups and symplectic groups. In a recent paper [“Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups”, Ann. Math. (2) 180, No. 3, 971–1049 (2014)], the author confirmed the Gan-Gross-Prasad conjecture for unitary groups under some local restrictions.
The refinements for the Gross-Prasad conjecture and for the Gan-Gross-Prasad conjecture seek to establish explicit identities between (the absolute value square of) the period integrals and the critical values of the corresponding \(L\)-functions. The study in this direction was pioneered by A. Ichino and T. Ikeda [Geom. Funct. Anal. 19, No. 5, 1378–1425 (2010; Zbl 1216.11057)] for orthogonal groups. As the sequel to his above-mentioned work [loc. cit.] and subject to some local conditions, the author uses the Jacquet-Rallis relative trace formula approach to further establish the refinement of the global Gan-Gross-Prasad conjecture for unitary groups, as formulated by R. N. Harris [“A refined Gross-Prasad Conjecture for unitary groups”, PhD Thesis, San Diego: University of California, San Diego (2011), http://arxiv.org/abs/1201.0518]. As an application, the author proves the positivity for certain Rankin-Selberg central \(L\)-values.

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] Avraham Aizenbud, Dmitry Gourevitch, Stephen Rallis, and Gérard Schiffmann, Multiplicity one theorems, Ann. of Math. (2) 172 (2010), no. 2, 1407 – 1434. · Zbl 1202.22012 · doi:10.4007/annals.2010.172.1413
[2] R. Beuzart-Plessis, La conjecture locale de Gross-Prasad pour les représentations tempérés des groupes unitaires, arXiv:1205.2987. · Zbl 1357.22008
[3] M. Cowling, U. Haagerup, and R. Howe, Almost \?² matrix coefficients, J. Reine Angew. Math. 387 (1988), 97 – 110. · Zbl 0638.22004
[4] Hervé Jacquet and Nan Chen, Positivity of quadratic base change \?-functions, Bull. Soc. Math. France 129 (2001), no. 1, 33 – 90 (English, with English and French summaries). · Zbl 1069.11017
[5] Brooke Feigon, Erez Lapid, and Omer Offen, On representations distinguished by unitary groups, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 185 – 323. · Zbl 1329.11053
[6] Yuval Z. Flicker, Twisted tensors and Euler products, Bull. Soc. Math. France 116 (1988), no. 3, 295 – 313 (English, with French summary). · Zbl 0674.10026
[7] Wee Teck Gan, Benedict H. Gross, and Dipendra Prasad, Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups. Astérisque 346, 1-110. · Zbl 1280.22019
[8] Wee Teck Gan and Atsushi Ichino, On endoscopy and the refined Gross-Prasad conjecture for (\?\?\(_{5}\),\?\?\(_{4}\)), J. Inst. Math. Jussieu 10 (2011), no. 2, 235 – 324. · Zbl 1241.11058 · doi:10.1017/S1474748010000198
[9] Paul B. Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2) 125 (1987), no. 2, 209 – 235. · Zbl 0625.10020 · doi:10.2307/1971310
[10] Stephen Gelbart, Hervé Jacquet, and Jonathan Rogawski, Generic representations for the unitary group in three variables, Israel J. Math. 126 (2001), 173 – 237. · Zbl 1007.22022 · doi:10.1007/BF02784154
[11] David Ginzburg, Dihua Jiang, and Stephen Rallis, On the nonvanishing of the central value of the Rankin-Selberg \?-functions, J. Amer. Math. Soc. 17 (2004), no. 3, 679 – 722. · Zbl 1057.11029
[12] David Ginzburg, Dihua Jiang, and Stephen Rallis, Models for certain residual representations of unitary groups, Automorphic forms and \?-functions I. Global aspects, Contemp. Math., vol. 488, Amer. Math. Soc., Providence, RI, 2009, pp. 125 – 146. · Zbl 1195.11069 · doi:10.1090/conm/488/09567
[13] Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. · Zbl 1220.42001
[14] Benedict H. Gross, Heights and the special values of \?-series, Number theory (Montreal, Que., 1985) CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115 – 187. · Zbl 0623.10019
[15] Benedict H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), no. 2, 287 – 313. · Zbl 0904.11014 · doi:10.1007/s002220050186
[16] Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of \?-series, Invent. Math. 84 (1986), no. 2, 225 – 320. · Zbl 0608.14019 · doi:10.1007/BF01388809
[17] Harish-Chandra, Harmonic analysis on reductive \?-adic groups, Lecture Notes in Mathematics, Vol. 162, Springer-Verlag, Berlin-New York, 1970. Notes by G. van Dijk. · Zbl 0202.41101
[18] Harish-Chandra, Admissible invariant distributions on reductive \?-adic groups, Lie theories and their applications (Proc. Ann. Sem. Canad. Math. Congr., Queen’s Univ., Kingston, Ont., 1977) Queen’s Univ., Kingston, Ont., 1978, pp. 281 – 347. Queen’s Papers in Pure Appl. Math., No. 48.
[19] Michael Harris and Stephen S. Kudla, On a conjecture of Jacquet, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 355 – 371. · Zbl 1080.11039
[20] Michael Harris, \?-functions and periods of adjoint motives, Algebra Number Theory 7 (2013), no. 1, 117 – 155. · Zbl 1319.11028 · doi:10.2140/ant.2013.7.117
[21] Richard Neal Harris, A Refined Gross-Prasad Conjecture for Unitary Groups, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.) – University of California, San Diego. · Zbl 1322.11047
[22] Atsushi Ichino, Trilinear forms and the central values of triple product \?-functions, Duke Math. J. 145 (2008), no. 2, 281 – 307. · Zbl 1222.11065 · doi:10.1215/00127094-2008-052
[23] Atsushi Ichino and Tamutsu Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), no. 5, 1378 – 1425. · Zbl 1216.11057 · doi:10.1007/s00039-009-0040-4
[24] A. Ichino and W. Zhang, Spherical characters for a strongly tempered pair. Appendix to [51].
[25] Hervé Jacquet, Archimedean Rankin-Selberg integrals, Automorphic forms and \?-functions II. Local aspects, Contemp. Math., vol. 489, Amer. Math. Soc., Providence, RI, 2009, pp. 57 – 172. · Zbl 1250.11051 · doi:10.1090/conm/489/09547
[26] Hervé Jacquet, Distinction by the quasi-split unitary group, Israel J. Math. 178 (2010), 269 – 324. · Zbl 1208.11068 · doi:10.1007/s11856-010-0066-1
[27] H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367 – 464. · Zbl 0525.22018 · doi:10.2307/2374264
[28] Hervé Jacquet and Stephen Rallis, On the Gross-Prasad conjecture for unitary groups, On certain \?-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 205 – 264. · Zbl 1222.22018
[29] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499 – 558. , https://doi.org/10.2307/2374103 H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4, 777 – 815. · Zbl 0491.10020 · doi:10.2307/2374050
[30] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499 – 558. , https://doi.org/10.2307/2374103 H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4, 777 – 815. · Zbl 0491.10020 · doi:10.2307/2374050
[31] Erez Lapid and Stephen Rallis, On the nonnegativity of \?(1\over2,\?) for \?\?_{2\?+1}, Ann. of Math. (2) 157 (2003), no. 3, 891 – 917. · Zbl 1067.11026
[32] Erez M. Lapid, On the nonnegativity of Rankin-Selberg \?-functions at the center of symmetry, Int. Math. Res. Not. 2 (2003), 65 – 75. · Zbl 1046.11032 · doi:10.1155/S1073792803204013
[33] E. Lapid and Z. Mao, On a new functional equation for local integrals, preprint.. · Zbl 1306.22008
[34] C-P. Mok, Endoscopic classification of representations of quasi-split unitary groups, arXiv:1206.0882v1. · Zbl 1316.22018
[35] Cary Rader and Steve Rallis, Spherical characters on \?-adic symmetric spaces, Amer. J. Math. 118 (1996), no. 1, 91 – 178. · Zbl 0861.22011
[36] Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties, arXiv:1203.0039.. · Zbl 1479.22016
[37] Binyong Sun, Bounding matrix coefficients for smooth vectors of tempered representations, Proc. Amer. Math. Soc. 137 (2009), no. 1, 353 – 357. · Zbl 1156.22013
[38] I. I. Piatetski-Shapiro, Multiplicity one theorems, Automorphic forms, representations and \?-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 209 – 212. · Zbl 0423.22017
[39] Ye Tian, Congruent numbers and Heegner points, preprint. · Zbl 1303.11067
[40] J.-L. Waldspurger, Quelques propriétés arithmétiques de certaines formes automorphes sur \?\?(2), Compositio Math. 54 (1985), no. 2, 121 – 171 (French). J.-L. Waldspurger, Sur les valeurs de certaines fonctions \? automorphes en leur centre de symétrie, Compositio Math. 54 (1985), no. 2, 173 – 242 (French).
[41] J. Waldspurger, Une formule intégrale reli la conjecture locale de Gross-Prasad, me partie: extension aux représentations tempérés. arXiv:0904.0314..
[42] P.-J. White, Tempered automorphic representations of the unitary group, arXiv: 1106.1127.
[43] Thomas Crawford Watson, Rankin triple products and quantum chaos, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.) – Princeton University.
[44] Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang, The Gross-Zagier formula on Shimura curves. Ann. of Math. Studies #184, Princeton University Press, 2012. · Zbl 1272.11082
[45] Zhiwei Yun, The fundamental lemma of Jacquet and Rallis, Duke Math. J. 156 (2011), no. 2, 167 – 227. With an appendix by Julia Gordon. · Zbl 1211.14039 · doi:10.1215/00127094-2010-210
[46] Shouwu Zhang, Heights of Heegner points on Shimura curves, Ann. of Math. (2) 153 (2001), no. 1, 27 – 147. · Zbl 1036.11029 · doi:10.2307/2661372
[47] Shou-Wu Zhang, Gross-Zagier formula for \?\?\(_{2}\), Asian J. Math. 5 (2001), no. 2, 183 – 290. · Zbl 1111.11030 · doi:10.4310/AJM.2001.v5.n2.a1
[48] Shou-Wu Zhang, Gross-Zagier formula for \?\?(2). II, Heegner points and Rankin \?-series, Math. Sci. Res. Inst. Publ., vol. 49, Cambridge Univ. Press, Cambridge, 2004, pp. 191 – 214. · Zbl 1126.11026 · doi:10.1017/CBO9780511756375.008
[49] Shouwu Zhang, Linear forms, algebraic cycles, and derivatives of L-series, preprint.. · Zbl 0882.11029
[50] Wei Zhang, On arithmetic fundamental lemmas, Invent. Math. 188 (2012), no. 1, 197 – 252. · Zbl 1247.14031 · doi:10.1007/s00222-011-0348-1
[51] Wei Zhang, Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups, Ann. Math., in press.. · Zbl 1322.11048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.