×

Configuration-dependent modal analysis of a Cartesian parallel kinematics manipulator: numerical modeling and experimental validation. (English) Zbl 1293.70042

Summary: In the design optimization of a robot the configuration-dependent modal analysis can be a powerful tool to be exploited when high stiffness and high dynamic performances are concurrently required. In this paper the elastodynamics of a lower-mobility Parallel Kinematic Machine for pure translational motions is analyzed. The vibrational modes and the natural frequencies of the robot are evaluated as functions of the end effector position inside the workspace. A finite element model including kinematic joints is used to perform a series of modal analyses in a grid of points inside the workspace. A polynomial regression gives continuous volume maps of the natural frequencies distributions. The numerical model is validated by comparison with experiments: a modal analysis is conducted on a set of inertance Frequency Response Functions acquired on several points of the machine components as a result of an excitation given by an instrumented hammer. A Natural Frequency Difference analysis validates the model under certain conditions and highlights some critical issues to be focused on in future works.

MSC:

70E60 Robot dynamics and control of rigid bodies
70B15 Kinematics of mechanisms and robots
70-05 Experimental work for problems pertaining to mechanics of particles and systems
70-08 Computational methods for problems pertaining to mechanics of particles and systems
Full Text: DOI

References:

[1] Dwivedy SK, Eberhard P (2006) Dynamic analysis of flexible manipulators, a literature review. Mech Mach Theory 41:749-777. doi:10.1016/j.mechmachtheory.2006.01.014 · Zbl 1095.70005 · doi:10.1016/j.mechmachtheory.2006.01.014
[2] Bricout JN, Debus JC, Micheau P (1990) A finite element model for the dynamics of flexible manipulator. Mech Mach Theory 25:119-128. doi:10.1016/0094-114X(90)90111-V · doi:10.1016/0094-114X(90)90111-V
[3] Jonker B (1990) A finite element dynamic analysis of flexible manipulators. Int J Robot Res 9(4):59-74. doi:10.1177/027836499000900404 · doi:10.1177/027836499000900404
[4] Ramachandran S, Nagarajan T, Siva Prasad N (1992) A finite element approach to the design and dynamic analysis of platform type robot manipulators. Finite Elem Anal Des 10(4):335-350. doi:10.1016/0168-874X(92)90020-D · Zbl 0850.70031 · doi:10.1016/0168-874X(92)90020-D
[5] Tokhi MO, Mohamed Z, Shaheed MH (2001) Dynamic characterisation of a flexible manipulator system. Robotica 19:571-580. doi:10.1017/S0263574700003209 · doi:10.1017/S0263574700003209
[6] Bouzgarrou, BC; etal., Rigidity analysis of T3R1 parallel robot with uncoupled kinematics (2004)
[7] Wang, YY; etal., Finite element analysis and comparison of two hybrid robots—the tricept and the TriVariant, 490-495 (2006) · doi:10.1109/IROS.2006.282522
[8] Bratland M, Haugen B, Rølvåg T (2011) Modal analysis of active flexible multibody systems. Comput Struct 89:750-761. doi:10.1016/j.compstruc.2011.02.010 · doi:10.1016/j.compstruc.2011.02.010
[9] Cheng, L.; Wang, H., Finite element modal analysis of the FPD glass substrates handling robot, 1341-1346 (2012) · doi:10.1109/ICMA.2012.6284331
[10] Jacobus, RF; Serna, MA, Modal analysis of a three dimensional flexible robot, No. 4, 2962-2967 (1994) · doi:10.1109/ROBOT.1994.350889
[11] Callegari, M.; Cannella, F.; Monti, S.; Santolini, C.; Pagnanelli, P., Dynamic models for the re-engineering of a high-speed Cartesian robot, No. 1, 560-565 (2001) · doi:10.1109/AIM.2001.936525
[12] Gasparetto A (2004) On the modeling of flexible-link planar mechanisms: experimental validation of an accurate dynamic model. J Dyn Syst Meas Control 126(2):365-375. doi:10.1115/1.1767856 · doi:10.1115/1.1767856
[13] Wiens, GJ; Hardage, DS, Structural dynamics and system identification of parallel kinematic machines (2006)
[14] Wang X, Mills J, Guo S (2009) Experimental identification and active control of configuration dependent linkage vibration in a planar parallel robot. IEEE Trans Control Syst Technol 17(4):960-969. doi:10.1109/TCST.2009.2014356 · doi:10.1109/TCST.2009.2014356
[15] Rafieian, F.; Liu, Z.; Hazel, B., Dynamic model and modal testing for vibration analysis of robotic grinding process with a 6 DOF flexible-joint manipulator, 2793-2798 (2009) · doi:10.1109/ICMA.2009.5246491
[16] Rognant M, Courteille E, Maurine P (2010) A systematic procedure for the elastodynamic modeling and identification of robot manipulators. IEEE Trans Robot 26(6):1085-1093. doi:10.1109/TRO.2010.2066910 · doi:10.1109/TRO.2010.2066910
[17] Pedrammehr S, Mahboubkhah M, Khani N (2013) A study on vibration of Stewart platform-based machine tool table. Int J Adv Manuf Technol 65:991-1007. doi:10.1007/s00170-012-4234-9 · doi:10.1007/s00170-012-4234-9
[18] Piras G, Cleghorn WL, Mills JK (2004) Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links. Mech Mach Theory 40(7):849-862. doi:10.1016/j.mechmachtheory.2004.12.007 · Zbl 1077.70005 · doi:10.1016/j.mechmachtheory.2004.12.007
[19] Wu J, Wang J, Wang L, Li T, You Z (2009) Study on the stiffness of a 5-DOF hybrid machine tool with actuation redundancy. Mech Mach Theory 44(2):289-305. doi:10.1016/j.mechmachtheory.2008.10.001 · Zbl 1188.70040 · doi:10.1016/j.mechmachtheory.2008.10.001
[20] Wu J, Li T, Wang J, Wang L (2013) Stiffness and natural frequency of a 3-DOF parallel manipulator with consideration of additional leg candidates. Robot Auton Syst 61(8):868-875. doi:10.1016/j.robot.2013.03.001 · doi:10.1016/j.robot.2013.03.001
[21] Gasparetto A, Zanotto V (2006) Vibration reduction in a flexible-link mechanism through synthesis of an optimal controller. Meccanica 41(6):611-622. doi:10.1007/s11012-006-9007-9 · Zbl 1163.74504 · doi:10.1007/s11012-006-9007-9
[22] Boscariol P, Gasparetto A, Zanotto V (2011) Simultaneous position and vibration control system for flexible link mechanisms. Meccanica 46(4):723-737. doi:10.1007/s11012-010-9333-9 · Zbl 1271.74132 · doi:10.1007/s11012-010-9333-9
[23] Carbonari L et al (2013) Dynamic modelling of a 3-CPU parallel robot via screw theory. Mech Sci (in press). Special issue on recent advances and current trends in multibody dynamics
[24] Callegari, M.; Palpacelli, M.; Scarponi, M., Kinematics of the 3-CPU parallel manipulator assembled for motions of pure translation, 4031-4036 (2005)
[25] Callegari M, Palpacelli MC (2008) Prototype design of a translating parallel robot. Meccanica 43(2):133-151. doi:10.1007/s11012-008-9116-8 · Zbl 1137.70005 · doi:10.1007/s11012-008-9116-8
[26] Martarelli M, Revel GM, Santolini C (2001) Automated modal analysis by scanning laser vibrometry: problems and uncertainties associated with the scanning system calibration. Mech Syst Signal Process 15(3):581-601. doi:10.1006/mssp.2000.1336 · doi:10.1006/mssp.2000.1336
[27] Ewins DJ (2000) Modal testing theory, practice and application, 2nd edn. Research Studies Press LTD, London
[28] Zwink, BR; Jacobs-Omalley, LD, Experimental study of joint linearity (2013)
[29] Cammarata A, Condorelli D, Sinatra R (2012) An algorithm to study the elastodynamics of parallel kinematic machines with lower kinematic pairs. J Mech Robot 5(1):011004. doi:10.1115/1.4007705 · doi:10.1115/1.4007705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.