×

Detecting symmetries of rational plane and space curves. (English) Zbl 1293.65023

Summary: This paper addresses the problem of determining the symmetries of a plane or space curve defined by a rational parametrization. We provide effective methods to compute the involution and rotation symmetries for the planar case. As for space curves, our method finds the involutions in all cases, and all the rotation symmetries in the particular case of Pythagorean-hodograph curves. Our algorithms solve these problems without converting to implicit form. Instead, we make use of a relationship between two proper parametrizations of the same curve, which leads to algorithms that involve only univariate polynomials. These algorithms have been implemented and tested in the Sage system.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)

Software:

SageMath

References:

[1] Alcázar, J. G., Computing the shapes arising in a family of space rational curves depending on one parameter, Comput. Aided Geom. Des., 29, 315-331 (2012) · Zbl 1298.65027
[2] Alcázar, J. G., Efficient detection of symmetries of polynomially parametrized curves, J. Comput. Appl. Math., 255, 715-724 (2014) · Zbl 1291.65052
[3] Alcázar, J. G.; Díaz-Toca, G. M., Topology of 2D and 3D rational curves, Comput. Aided Geom. Des., 27, 7, 483-502 (2010) · Zbl 1210.65031
[4] Alt, H.; Mehlhorn, K.; Wagener, H.; Welzl, E., Congruence, similarity and symmetries of geometric objects, Discrete Comput. Geom., 3, 237-256 (1988) · Zbl 0679.68070
[5] Berner, A.; Bokeloh, M.; Wand, M.; Schilling, A.; Seidel, H. P., A graph-based approach to symmetry detection, (Symposium on Volume and Point-Based Graphics (2008)), 1-8
[6] Bokeloh, M.; Berner, A.; Wand, M.; Seidel, H. P.; Schilling, A., Symmetry detection using line features, Comput. Graph. Forum, 28, 2, 697-706 (2009)
[7] Boutin, M., Numerically invariant signature curves, Int. J. Comput. Vis., 40, 3, 235-248 (2000) · Zbl 1012.68707
[8] Brass, P.; Knauer, C., Testing congruence and symmetry for general 3-dimensional objects, Comput. Geom., 27, 3-11 (2004) · Zbl 1039.65017
[9] Calabi, E.; Olver, P. J.; Shakiban, C.; Tannenbaum, A.; Haker, S., Differential and numerically invariant signature curves applied to object recognition, Int. J. Comput. Vis., 26, 2, 107-135 (1998)
[10] Coxeter, H. S.M., Introduction to Geometry (1969), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York-London-Sydney · Zbl 0181.48101
[11] Farouki, R. T., Pythagorean-Hodograph Curves (2008), Springer · Zbl 1144.51004
[12] Goldman, R., Rethinking Quaternions: Theory and Computation, Synthesis Lectures on Computer Graphics and Animation (2010), Morgan and Clayter Publishers · Zbl 1243.68003
[13] Heard, W. B., Rigid Body Mechanics: Mathematics, Physics and Applications (2006), Wiley-VCH Verlag
[14] Huang, Z.; Cohen, F. S., Affine-invariant \(B\)-spline moments for curve matching, IEEE Trans. Image Process., 5, 10, 1473-1480 (1996)
[15] Jiang, X.; Yu, K.; Bunke, H., Detection of rotational and involutional symmetries and congruity of polyhedra, Vis. Comput., 12, 4, 193-201 (1996) · Zbl 0846.68100
[16] Lebmeir, P., Feature detection for real plane algebraic curves (2009), Technische Universität München, Ph.D. thesis
[17] Lebmeir, P.; Richter-Gebert, J., Rotations, translations and symmetry detection for complexified curves, Comput. Aided Geom. Des., 25, 707-719 (2008) · Zbl 1172.14345
[18] Lei, Z.; Tasdizen, T.; Cooper, D. B., PIMs and invariant parts for shape recognition, (Proceedings Sixth International Conference on Computer Vision (1998)), 827-832
[19] Li, M.; Langbein, F.; Martin, R., Detecting approximate symmetries of discrete point subsets, Comput. Aided Des., 40, 1, 76-93 (2008)
[20] Li, M.; Langbein, F.; Martin, R., Detecting design intent in approximate CAD models using symmetry, Comput. Aided Des., 42, 3, 183-201 (2010)
[21] Lipman, Y.; Cheng, X.; Daubechies, I.; Funkhouser, T., Symmetry factored embedding and distance, Proceedings of ACM SIGGRAPH 2010. Proceedings of ACM SIGGRAPH 2010, ACM Trans. Graph., 29, 4 (2010)
[22] Loy, G.; Eklundh, J., Detecting symmetry and symmetric constellations of features, (Proceedings ECCV 2006, 9th European Conference on Computer Vision (2006)), 508-521
[23] Martinet, A.; Soler, C.; Holzschuch, N.; Sillion, F., Accurate detection of symmetries in 3D shapes, ACM Trans. Graph., 25, 2, 439-464 (2006)
[24] Mitra, N. J.; Guibas, L. J.; Pauly, M., Partial and approximate symmetry detection for 3D geometry, ACM Trans. Graph., 25, 3, 560-568 (2006)
[25] Muntingh, G., Personal website, software
[26] Podolak, J.; Shilane, P.; Golovinskiy, A.; Rusinkiewicz, S.; Funkhouser, T., A planar-reflective symmetry transform for 3D shapes, (Proceeding SIGGRAPH (2006)), 549-559
[27] Schnabel, R.; Wessel, R.; Wahl, R.; Klein, R., Shape recognition in 3D-point clouds, (The 16-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision ’08 (2008))
[28] Sendra, J. R.; Winkler, F.; Perez-Diaz, S., Rational Algebraic Curves (2008), Springer-Verlag · Zbl 1129.14083
[29] Sener, S.; Unel, M., Affine invariant fitting of algebraic curves using Fourier descriptors, Pattern Anal. Appl., 8, 72-83 (2005) · Zbl 1422.68226
[30] Simari, P.; Kalogerakis, E.; Singh, K., Folding meshes: hierarchical mesh segmentation based on planar symmetry, (Proc. Symp. Geometry Processing (2006)), 111-119
[31] Stein, W. A., Sage Mathematics Software (Version 5.9) (2013), The Sage Development Team
[32] Suk, T.; Flusser, J., Pattern recognition by affine moment invariants, Pattern Recognit., 26, 1, 167-174 (1993)
[33] Suk, T.; Flusser, J., Affine normalization of symmetric objects, (Proceedings ACIVS 2005. Proceedings ACIVS 2005, Lecture Notes in Computer Science (2005)), 100-107
[34] Sun, C.; Sherrah, J., 3D symmetry detection using the extended Gaussian image, IEEE Trans. Pattern Anal. Mach. Intell., 19, 164-168 (1997)
[35] Tarel, J. P.; Cooper, D. B., The complex representation of algebraic curves and its simple exploitation for pose estimation and invariant recognition, IEEE Trans. Pattern Anal. Mach. Intell., 22, 7, 663-674 (2000)
[36] Tasdizen, T.; Tarel, J. P.; Cooper, D. B., Improving the stability of algebraic curves for applications, IEEE Trans. Image Process., 9, 405-416 (2000) · Zbl 0962.94001
[37] Tate, S.; Jared, G., Recognising symmetry in solid models, Comput. Aided Des., 35, 7, 673-692 (2003)
[38] Taubin, G., Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations, with applications to edge and range image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 13, 11, 1115-1138 (1991)
[39] Taubin, G.; Cooper, D. B., Object recognition based on moments (or algebraic) invariants, (Mundy, J. L.; Zisserman, A., Geometric Invariance in Computer Vision (1992), MIT Press), 375-397
[40] Weiss, I., Noise-resistant invariants of curves, IEEE Trans. Pattern Anal. Mach. Intell., 15, 9, 943-948 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.