×

Star graphs induce tetrad correlations: for Gaussian as well as for binary variables. (English) Zbl 1293.62029

Summary: Tetrad correlations were obtained historically for Gaussian distributions when tasks are designed to measure an ability or attitude so that a single unobserved variable may generate the observed, linearly increasing dependences among the tasks. We connect such generating processes to a particular type of directed graph, the star graph, and to the notion of traceable regressions. Tetrad correlation conditions for the existence of a single latent variable are derived. These are needed for positive dependences not only in joint Gaussian but also in joint binary distributions. Three applications with binary items are given.

MSC:

62E10 Characterization and structure theory of statistical distributions
62H17 Contingency tables
62H20 Measures of association (correlation, canonical correlation, etc.)

Software:

mokken; eRm; TETRAD; poLCA

References:

[1] Allman, E.S., Rhodes, J.A., Sturmfels, B. and Zwiernik, P. (2014). Tensors of nonnegative rank two. · Zbl 1312.15033
[2] Andersen, P.K. and Skovgaard, L.T. (2010)., Regression with linear predictors . Springer, New York. · Zbl 1284.62025
[3] Anderson, T.W. and Rubin, H. (1956). Statistical inference in factor analysis. In:, Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability , 5 , University of California Press, Berkeley, 111-150. · Zbl 0070.14703
[4] Bartlett, M.S. (1935). Contingency table interactions., Supplem. J. Roy. Statist. Soc. 2 , 248-252.
[5] Bartlett, M.S. (1951). An inverse matrix adjustment arising in discriminant analysis., Ann. Math. Statist. 22 , 107-111. · Zbl 0042.38203 · doi:10.1214/aoms/1177729698
[6] Bartolucci, F. and Forcina, A. (2000). A likelihood ratio test for MTP\(_2\) within binary variables., Ann. Statist. 28 , 1206-1218. · Zbl 1105.62351 · doi:10.1214/aos/1015956713
[7] Birch, M.W. (1963). Maximum likelihood in three-way contingency tables., J. Roy. Statist. Soc. B 25 , 220-233. · Zbl 0121.14001
[8] Bolviken, E. (1982). Probability inequalities for the multivariate normal with non-negative partial correlations., Scand. J. Statist. 9 , 49-58. · Zbl 0489.62052
[9] Cox, D.R. (1972). The analysis of multivariate binary data., J. Roy. Statist. Soc. C 21 , 113-120.
[10] Cox, D.R. and Wermuth, N. (1994). A note on the quadratic exponential binary distribution., Biometrika 81 , 403-406. · Zbl 0825.62363 · doi:10.1093/biomet/81.2.403
[11] Cox, D.R. and Wermuth, N. (2002). On some models for multivariate binary variables parallel in complexity with the multivariate Gaussian distribution., Biometrika 89 , 462-469. · Zbl 1019.62050 · doi:10.1093/biomet/89.2.462
[12] Dempster, A.P. (1972). Covariance selection., Biometrics 28 , 157-175.
[13] DFG-Forschungsbericht (1977)., Schwangerschaftsverlauf und Kindesentwicklung . Boldt, Boppard.
[14] Edwards, A.W.F. (1963). The measure of association in a \(2\times2\) table., J. Roy. Statist. Soc. A 126 , 109-114.
[15] Esary, J.D., Proschan, F. and Walkup, D.W. (1967). Association of random variables, with applications., Ann. Math. Statist. 38 , 1466-1474. · Zbl 0183.21502 · doi:10.1214/aoms/1177698701
[16] Grcar, J.F. (2011). Mathematicians of Gaussian elimination., Notices Amer. Math. Soc. 58 , 782-792. · Zbl 1227.01001
[17] Hardt, J. (2008). The symptom checklist-27-plus (SCL-27-plus): A modern conceptualization of a traditional screening instrument., GMS Psycho-Soc-Medicine 5 .
[18] Hawkins, D.L. (1989). Using U statistics to derive the asymptotic distribution of Fisher’s z-statistic., Amer. Statist. 43 , 235-237.
[19] Heywood, H.B. (1931). On finite sequences of real numbers., Proc. Roy. Soc. London A 134 , 486-501. · Zbl 0003.16404 · doi:10.1098/rspa.1931.0209
[20] Holland, P.W. and Rosenbaum, P.R. (1986). Conditional association and unidimensionality in monotone latent variable models., Ann. Statist. 14 , 1523-1543. · Zbl 0625.62102 · doi:10.1214/aos/1176350174
[21] Karlin, S. and Rinott, Y. (1983). M-matrices as covariance matrices of multinormal distributions., Linear Algebra Appl. 52 , 419-438. · Zbl 0538.62040 · doi:10.1016/0024-3795(83)80027-5
[22] Lake, A. (1994). Reconstructing evolutionary trees from DNA and protein sequences: Paralinear distances., Proc. National Acad. Sci. USA 91 , 1455-1459.
[23] Lawley, D.N. (1967). Some new results in maximum likelihood factor analysis., Proc. Roy. Soc. Edinb. A 67 , 256-264. · Zbl 0161.38001
[24] Lazarsfeld, P.F. (1950). The logical and mathematical foundation of latent structure analysis., Measurement Prediction 4 , 362-412.
[25] Linzer, D.A. and Lewis, J.B. (2011). poLCA: An R package for polytomous variable latent class analysis., J. Statist. Softw. 42 .
[26] Lněnička, R. and Matúš, F. (2007). On Gaussian conditional independence structures., Kybernetika 43 , 327-342. · Zbl 1144.60302
[27] Mair, P. and Hatzinger, R. (2007). Extended Rasch modeling: the eRm package for the implication of IRT models in R., J. Statist. Softw. 20, 9 .
[28] Marchetti, G.M. and Wermuth, N. (2009). Matrix representations and independencies in directed acyclic graphs., Ann. Statist. 47 , 961-978. · Zbl 1162.62061 · doi:10.1214/08-AOS594
[29] Neyman, J. (1971). Molecular studies of evolution: A source of novel statistical problems. In, Statistical decision theory and related topics , Gupta, S.S. and Yackel, J. (eds). Academic Press, New York, 1-27. · Zbl 0231.62010 · doi:10.1016/B978-0-12-307550-5.50005-8
[30] Ostrowski, A. (1937). Über die Determinanten mit überwiegender Hauptdiagonale., Commentarii Mathematici Helvetici 10 , 69-96. · Zbl 0017.29010 · doi:10.1007/BF01214284
[31] Ostrowski, A. (1956). Determinanten mit überwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationsprozessen., Commentarii Mathematici Helvetici 29 , 175-210. · Zbl 0072.13803 · doi:10.1007/BF02564340
[32] Rubin, D.B. and Thayer, D.T. (1982). EM algorithms for ML factor analysis., Psychometrika 47 , 69-76. · Zbl 0483.62046 · doi:10.1007/BF02293851
[33] Sadeghi, K. and Lauritzen, S.L. (2014). Markov properties for mixed graphs., Bernoulli 20 , 395-1028. · Zbl 1303.60064 · doi:10.3150/12-BEJ502
[34] Schur, I. (1917). Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind., J. Reine Angew. Mathem. 147 , 205-232. · JFM 46.0475.01
[35] Spearman, C. (1904). General intelligence, objectively determined and measured., American Journal of Psychology 15 , 201-293.
[36] Spirtes, P., Glymour, C. and Scheines, R. (1993)., Causation, prediction and search . Springer, New York (2nd ed., 2001, MIT Press, Cambridge). · Zbl 0806.62001
[37] Stanghellini, E. (1997). Identification of a single-factor model using graphical Gaussian rules., Biometrika 84 , 241-244. · Zbl 0883.62061 · doi:10.1093/biomet/84.1.241
[38] Stanghellini, E. and Vantaggi, B. (2013). Identification of discrete concentration graph models with one hidden binary variable., Bernoulli 19 , 1920-1937. · Zbl 1332.62016 · doi:10.3150/12-BEJ435
[39] Van der Ark, L.A. (2012). New developments in Mokken scale analysis in R., J. Statist. Software 48, 5 .
[40] Wermuth, N. (2012). Traceable regressions., International Statistical Review 80 , 415-438. · doi:10.1111/j.1751-5823.2012.00195.x
[41] Wermuth, N., Cox, D.R. and Marchetti, G.M. (2006). Covariance chains., Bernoulli 12 , 841-862. · Zbl 1134.62031 · doi:10.3150/bj/1161614949
[42] Wermuth, N., Marchetti, G.M. and Cox, D.R. (2009). Triangular systems for symmetric binary variables., Electr. J. Statist. 3 , 932-955. · Zbl 1326.62145 · doi:10.1214/09-EJS439
[43] Wermuth, N. and Sadeghi, K. (2012). Sequences of regressions and their independences (with discussion)., TEST 21 , 215-279. · Zbl 1259.62063 · doi:10.1007/s11749-012-0290-6
[44] Wermuth, N., Wiedenbeck, M. and Cox, D.R. (2006). Partial inversion for linear systems and partial closure of independence graphs., BIT, Numerical Mathematics 46 , 883-901. · Zbl 1106.05094 · doi:10.1007/s10543-006-0093-9
[45] Zentgraf, R. (1975). A note on Lancaster’s definition of higher-order interactions., Biometrika 62 , 375-378. · Zbl 0309.62041 · doi:10.1093/biomet/62.2.375
[46] Zwiernik, P. and Smith, J.Q. (2011). Implicit inequality constraints in a binary tree model., Electr. J. Statist. 5 , 1276-1312. · Zbl 1274.62355 · doi:10.1214/11-EJS640
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.