×

A new conformal invariant on 3-dimensional manifolds. (English) Zbl 1293.53043

Let \((M,g)\) be an \(n\)-dimensional Riemannian manifold (\(n>2\)) and let \(S_g\) be the Schouten tensor of \(g\), given by \[ S_g=\frac{1}{n-2}\left(\mathrm{Ric}-\frac{R}{2(n-1)}\cdot g\right). \] Then, for an integer \(k\) with \(1\leq k\leq n\), the \(k\)-scalar curvature of \(M\) can be defined by \[ \sigma_k(g):=\sigma_k(\Lambda_g), \] where \(\sigma_k\) is the elementary symmetric function in \(\mathbb R^n\) and \(\Lambda_g\) is the set of eigenvalues of the matrix \(g^{-1}\cdot S_g\). In particular, \[ \sigma_1(g)=\frac{R}{2(n-1)} ,\quad \sigma_2(g)=\frac{1}{2(n-2)^2}\left(-|\mathrm{Ric}|^2+\frac{n}{4(n-1)}R^2\right). \] Recently, Y. Ge and G. Wang [Proc. Am. Math. Soc. 140, No. 3, 1041–1044 (2012; Zbl 1238.53026)] proved a nice geometric inequality on 4-dimensional closed Riemannian manifolds with non-negative scalar curvature involving \(\sigma_1(g)\) and \(\sigma_2(g)\) as follows: \[ \frac{8}{3}\mathrm{vol}(g)\int_M\sigma_2(g)dv(g)\leq\left(\int_M\sigma_1(g)dv(g)\right)^2. \] The proof is based on the fact that \(\int_M\sigma_2(g)dv(g)\) is a conformal invariant, a fact which is only true on 4-dimensional manifolds. When the dimension is greater than 4, such an inequality does not hold. In the paper under review, the authors define a new conformal invariant and prove the following 3-dimensional analog of the above inequality.
{Theorem.} Any closed 3-dimensional manifold \(M\) with a metric \(g\) of non-negative scalar curvature satisfies \[ 3\mathrm{vol}(g)\int_M\sigma_2(g)dv(g)\leq\left(\int_M\sigma_1(g)dv(g)\right)^2. \] Equality holds if and only if \((M,g)\) is a space form.

MSC:

53C20 Global Riemannian geometry, including pinching
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

Citations:

Zbl 1238.53026

References:

[1] Bray, H. L., The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature (1997), Stanford University, Dissertation
[2] Catino, G.; Djadli, Z., Conformal deformations of integral pinched 3-manifolds, Adv. Math., 223, 393-404 (2010) · Zbl 1182.53040
[3] Chang, A.; Gursky, M.; Yang, P., An equation of Monge-Ampère type in conformal geometry, and four manifolds of positive Ricci curvature, Ann. of Math., 155, 709-787 (2002) · Zbl 1031.53062
[4] Chang, A.; Gursky, M.; Yang, P., A conformally invariant sphere theorem in four dimensions, Publ. Math. Inst. Hautes Études Sci., 98, 105-143 (2003) · Zbl 1066.53079
[5] Chen, S., Local estimates for some fully nonlinear elliptic equations, Int. Math. Res. Not., 2005, 3403-3425 (2005) · Zbl 1159.35343
[6] Chow, B.; Lu, P.; Ni, L., Hamiltonʼs Ricci Flow, Grad. Stud. Math., vol. 77 (2006), American Mathematical Society/Science Press: American Mathematical Society/Science Press Providence, RI/New York · Zbl 1118.53001
[7] De Lellis, C.; Topping, P., Almost Schur theorem, Calc. Var. Partial Differential Equations, 43, 347-354 (2012) · Zbl 1236.53036
[8] Dong, G. C., Nonlinear Partial Differential Equations of Second Order, Transl. Math. Monogr., vol. 95 (1991), AMS: AMS Providence, RI · Zbl 0759.35001
[9] Ge, Y.; Lin, C.-S.; Wang, G., On \(\sigma_2\)-scalar curvature, J. Differential Geom., 84, 45-86 (2010) · Zbl 1207.53049
[10] Ge, Y.; Wang, G., On a conformal quotient equation, Int. Math. Res. Not. IMRN, 2007 (2007), Art, ID rnm019, 32 pp · Zbl 1133.53033
[11] Ge, Y.; Wang, G., An almost Schur theorem on 4-dimensional manifolds, Proc. Amer. Math. Soc., 140, 1041-1044 (2012) · Zbl 1238.53026
[12] Ge, Y.; Wang, G., On \(\sigma_2\)-scalar curvature II, Comm. Anal. Geom., 21, 1-38 (2013) · Zbl 1270.53069
[13] Ge, Y.; Wang, G.; Xia, C., On problems related to an inequality of De Lellis and Topping, Int. Math. Res. Not. IMRN, 2012 (2012), Art, ID rns196
[14] Gilbarg, D.; Trudinger, N., Elliptic Partial Differential Equations of Second Order, Classics Math. (2001), Springer-Verlag: Springer-Verlag Berlin, reprint of the 1998 edition · Zbl 1042.35002
[15] Guan, P., Topics in geometric fully nonlinear equations, Lecture notes
[16] Guan, P.; Lin, C.-S.; Wang, G., Application of the method of moving planes to conformally invariant equations, Math. Z., 247, 1-19 (2004) · Zbl 1068.53023
[17] Guan, P.; Wang, G., Local estimates for a class of fully nonlinear equations arising from conformal geometry, Int. Math. Res. Not., 2003, 1413-1432 (2003) · Zbl 1042.53021
[18] Guan, P.; Wang, G., A fully nonlinear conformal flow on locally conformally flat manifolds, J. Reine Angew. Math., 557, 219-238 (2003) · Zbl 1033.53058
[19] Gursky, M., The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Comm. Math. Phys., 207, 131-143 (1999) · Zbl 0988.58013
[20] Gursky, M., Fully nonlinear equations, ellipticity, and curvature pinching, (Sémin. Congr., vol. 19 (2008)), 31-45 · Zbl 1280.53040
[21] Gursky, M.; Viaclovsky, J., A new variational characterization of three-dimensional space forms, Invent. Math., 145, 251-278 (2001) · Zbl 1006.58008
[22] Gursky, M.; Viaclovsky, J., A fully nonlinear equation on four-manifolds with positive scalar curvature, J. Differential Geom., 63, 131-154 (2003) · Zbl 1070.53018
[23] Gursky, M.; Viaclovsky, J., Volume comparison and the \(\sigma_k\) Yamabe problem, Adv. Math., 187, 447-487 (2004) · Zbl 1066.53081
[24] Krylov, N. V., Nonlinear Elliptic and Parabolic Equations of the Second Order, Math. Appl. (Soviet Series), vol. 7 (1987), D. Reidel Publishing Co.: D. Reidel Publishing Co. Dordrecht, translated from the Russian by P.L. Buzytsky · Zbl 0619.35004
[25] Li, A.; Li, Y., On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math., 56, 1416-1464 (2003) · Zbl 1155.35353
[26] Li, A.; Li, Y., On some conformally invariant fully nonlinear equations. II. Liouville, Harnack and Yamabe, Acta Math., 195, 117-154 (2005) · Zbl 1216.35038
[27] Motzkin, T.; Wasow, W., On the approximations of linear elliptic differential equations by difference equations with positive coefficients, J. Math. Phys., 31, 253-259 (1952) · Zbl 0050.12501
[28] Tian, G.; Wang, X.-J., Moser-Trudinger type inequalities for the Hessian equation, J. Funct. Anal., 259, 1974-2002 (2010) · Zbl 1210.26018
[29] Tso, K., On a real Monge-Ampère functional, Invent. Math., 101, 425-448 (1990) · Zbl 0724.35040
[30] Viaclovsky, J., Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J., 101, 283-316 (2000) · Zbl 0990.53035
[31] Viaclovsky, J., Conformal Geometry and Fully Nonlinear Equations, Nankai Tracts Math., vol. 11, 435-460 (2006), World Sci. Publ.: World Sci. Publ. Hackensack, NJ, Inspired by S.S. Chern · Zbl 1142.53030
[32] Wang, G., \( \sigma_k\)-scalar curvature and eigenvalues of the Dirac operator, Ann. Global Anal. Geom., 30, 65-71 (2006) · Zbl 1101.53030
[33] Wang, X. J., A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J., 43, 25-54 (1994) · Zbl 0805.35036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.